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Abstract

Background The St. Nicolas House Analysis (snha) is a new graph
estimation method for detecting extensive interactions among
variables. It operates by ranking absolute bivariate correlation coef-
ficients in descending order thereby creating hierarchic association
chains. The latter characterizes dependence structures of interact-
ing variables which can be visualized in a corresponding network
graph as a chain of end-to-end connected edges representing direct
relationships between the connected nodes.
Objective The important advantage of this relatively new approach
is that it produces less false positive edges resulting from indirect
or transitive associations than expected with standard correlation or
linear model-based approaches. Here, we aim to improve the detec-
tion of ramifications in graphs by addition of different data process-
ing layers to snha.
Methods The methods include the combinations of the extensions
R-squared gaining (rsg) and linear model check (lmc). The method
snha together with these so-called extensions were benchmarked
against default snha and other reference methods available for the
programming language R.
Results Combinations of rsg, lmc and bootstrapping improve snha
performance across different network types, albeit at the cost of
longer computation time.
Conclusion The improved accuracy and robustness of network ram-
ification detections make the integration of combinations of snha
extensions a valuable approach for complex network analysis.

Take-home message for students The St. Nicolas House Analysis R package offers intuitive and fast
ways to interact with your research data while providing a graphical representation of potential inter-
actions between variables.
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Abbreviations

Shna St. Nicolaus House Analysis
shna_def default shna without extensions
rsg R-squared gaining
lmc Linear model check
boot Bootstrapping
lmb Combination of bootstrapping and lmc
ct Correlation Thresholding
mb Meinshausen-Bühlmann
qg qgraph
bic Bayesian Information Criterion
ebic Extended Bayesian Information Criterion
ergm Exponential Random Graph Models
Sens Sensitivity
Spec Specificity
Prec Precision
Acc Accuracy
MCC Matthews’ Correlation Coefficient
BCR Balanced Classification Rate
NIR Null Information Rate
TP True Positives
FP False Positives
TN True Negatives
FN False Negatives
Note: Combinations of methods, such as lmc_rsg,
indicate the use of both lmc and rsg.

Introduction

Network reconstruction employs compu-
tational techniques to unveil the intricate
web of interactions in systems ranging
from biological to social and technological,
elucidating their structure and dynamics.
This process is crucial for grasping how
components interact and influence the
overall system behavior (Hemelrijk 1990).
Commonly, the aim of network recon-
struction is to deduce exclusively causative
relationships. For this purpose, numerous
approaches have been proposed. They may
be designed for specific applications such
as protein structure prediction (Marks et al.
2011) or gene expression networks (Logs-
don and Mezey 2010). More general-pur-
pose methods may formulate the task as
a feature-selection problem (Huynh-Thu
et al. 2010; Meinshausen and Bühlmann

2006), or leverage partial correlation in-
formation to characterize relationships
among variables (Hemelrijk 1990).
Here we focus on the St. Nicolas House
analyses (snha), first published in 2019
(Groth et al. 2019). The shna takes a dif-
ferent approach: It searches for so-called
association chains. Association chains in-
corporate the domino effect of one variable
influencing the next one, which itself in-
fluences a third variable on its own, and so
on.
shna looks for association chains in the
correlation matrix of a given dataset. Start-
ing with the first variable 𝐺, the correla-
tions with the other variables or nodes
are ranked in non-increasing manner. Let
us say that this results in the correlation
coefficient 𝑟𝐺,𝑂 between 𝐺 and 𝑂 being
the greatest, followed by the slightly lower
one between nodes 𝐺 and 𝐶(𝑟𝐺,𝐶) and an
even smaller one between nodes 𝐺and
𝑀(𝑟𝐺,𝑀). When ranked hierarchically, we
get |𝑟𝐺,𝑂 ||> |𝑟𝐺,𝐶|| > |𝑟𝐺,𝑀|, and therewith
also the chain G-O-C-M. We define this
as the forward chain. Next, the sequence
is inverted, and the end node M from the
forward chain now constitutes the starting
node. We check whether for this back-
ward chain M-C-O-G the same hierarchic
order of magnitude is represented in the
correlation matrix: |𝑟𝑀,𝐶| > |𝑟𝑀,𝑂| > |𝑟𝑀,𝐺|.
These sequences of correlation coefficients,
that are characterized by descending order
when starting from either end, are named
“association chains”. Association chains
can be translated into network graphs. At
first view, the whole procedure sounds
trivial, but it opens the possibility of im-
mediately visualizing extensive interacting
variables in an explorative manner (Her-
manussen et al. 2021).
To illustrate the approach and simultane-
ously a weakness of shna, the following
directed graph is introduced (Figure 1).
There are two input variables depicted as
nodes, genetic predisposal and lifestyle
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Figure 1 A directed so-called Werner graph visualizing the obesity-mortality example. Nodes represent variables and edges direct

interactions between them. CVD: cardiovascular diseases.

choices, that influence the target variable
obesity. Obesity heightens the risk of car-
diovascular diseases (CVD), and CVD in
turn increases mortality among the af-
fected population. Additionally, CVD is a
risk factor for stroke, hence the graph also
includes a directed edge from the node
CVD to the node stroke. Stroke, on the
other hand, greatly increases mortality,
whose node ends up as the sink node. Note
that the triangle on the right is not a cy-
cle due to the directionality of the edges.
Therefore, the resulting network is a typi-
cal directed acyclic graph (DAG).
Due to its approach to find linear asso-
ciation chains, snha struggles with the
detection of ramifications. When given a
dataset or correlation matrix based on the
example graph, it is most likely to miss
one of the outgoing edges from CVD. How-
ever, the potentially missing relationship
describes a causative relationship, thus it
is too important to ignore (and tolerate)
its absence. Accordingly, the aim of this

study is to improve the capability of snha
to detect ramifications in the underlying
interdependencies of the input data with
only little increase in runtime.

Materials and methods

Software

Programming was done exclusively with
the language R for this project (R Core
Team 2022). Additionally, the R pack-
ages used include huge (Jiang et al. 2021),
qgraph (Epskamp et al. 2012), ergm (Kriv-
itsky et al. 2023), snha (Groth 2023), mc-
graph and asg (Groth 2022), of which huge,
qgraph and ergm can be considered refer-
ences of network reconstruction. Synthetic
data was generated with functions from
the mcgraph package (Novine et al. 2022).
A public version of mcgraph can be found
within the snha package calledmgraph.
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Graphs used

Barabasi graphs, also knownasBarabasi–Al-
bert (BA) models, are a type of scale-free
network characterized by preferential at-
tachment mechanism, where new nodes
are more likely to connect to existing nodes
with higher degrees (Barabasi and Albert
1999).
Density in the context of graphs refers to
the ratio of the number of actual edges in
the graph to the maximum possible num-
ber of edges among all nodes. It provides
a measure of how closely knit the connec-
tions are in the network, with higher den-
sity indicating more connections per node
and lower density signifying fewer connec-
tions per node (Diestel 2017).
The graphs analyzed include Barabasi
graphs (Barabasi and Albert 1999) of den-
sity 1.5 denoted as M1.5, Werner (W) and
Wernerextended (WX), an extended ver-
sion of W, graphs. WX has an additional di-
amond-like structure and a longer branch-
ing path compared to W. We included the
M1.5 as it was suggested to be a more
reasonable representation of biological
networks. These M1.5 graphs were made
in a way that either adds 1 or 2 edges at
each step of the Barabasi graph generation.
We chose to only include Barabasi graphs
with 20 nodes. The Barabasi graph in Fig-
ure 2 has 10 nodes and WX is shown with
12 nodes as visual representations of the
graphs used in our tests.

Data generation and benchmarking

In order to benchmark different graph
prediction methods, we decided to create
synthetic data using Novine’s Monte Carlo
implementation (Novine et al. 2022), the
function is called mgraph.graph2data from
the public snha package. Some testing was
done with huge data generation. Synthetic
data built upon a known graph thatwe gave
as an input allows us to easily compare the
predicted graph against the original one.

The huge package contains implementa-
tions of different methods for network
reconstruction, of which we chose cor-
relation thresholding (ct), Meinshausen-
Bühlmann (mb) (Meinshausen and Bühl-
mann 2006) covariance selection and
graphical least absolute shrinkage and
selection operator (glasso) (Friedman et al.
2008). As in most cases the true underly-
ing graph structure is unknown, we opted
to use the automatic lambda selection
function for the huge methods. Further-
more, glasso and lasso implementations of
qgraph were chosen with either Bayesian
Information Criterion (bic) or extended
Bayesian Information Criterion (ebic) (Ep-
skamp et al. 2012).
To complement these approaches and pro-
vide a comparative methodological frame-
work, we incorporated Exponential Ran-
dom Graph Models (ergm) from the ergm
package (Krivitsky et al. 2023). The ergms
are particularly well-suited for modeling
complex network data through specified
probability distributions over graphs, thus
offering a robust alternative to regularized
regression techniques used in glasso and
lasso (Krivitsky et al. 2023). This allows us
to contrast the performance of traditional
regression-based network reconstruction
techniques with that of stochastic models
tailored for social network analysis and
other fields where the underlying network
dynamics are inherently probabilistic.
The benchmarking procedure was gener-
ally structured as follows: Initially, a graph
was constructed utilizing the mgraph.new
function from the asg or the snha package.
The adjacency matrix derived from this
graph served as a blueprint for the gener-
ation of simulated data. This simulation
aimed to mimic real data as accurately as
possible by maintaining the graph’s inter-
dependencies in a balanced manner and
incorporating random noise, ensuring that
the inherent connections were neither ex-
aggerated nor understated (Novine et al.
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Figure 2 A: Barabasi graph with 10 nodes of densities 1.5 B: Wernerextended graph with 12 nodes.

2022). The result was a synthetic dataset
wherein the quantity of variables matched
the number of nodes in the graph. This
dataset, or its correlation matrix if neces-
sary, was then used as input for the graph
estimation functions, which produced the
adjacency matrix of the estimated graph.
The final step involved evaluating each
method’s performance by contrasting the
estimated graph with the original one.

Accuracy metrics used

There has long been disagreement in the
scientific community about which accu-
racy standards should be used (Bekkar et al.

2013), most of these metrics are based on
ratios of true positives (TP), true negatives
(TN), false positives (FP) and false nega-
tives (FN). In our case, they correspond to
correct and incorrect numbers of predicted
edges or non-edges.
The sensitivity (Sens) is defined as the ratio
of true positives to the sumof true positives
and false negatives.

Sens = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

The specificity (Spec) is defined as the ratio
of true negatives to the sum of true nega-
tives and false positives.
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Spec = 𝑇𝑁
(𝑇𝑁 + 𝐹𝑃)

Precision (Prec) is calculated as the ratio of
true positives to the sum of the true posi-
tives and false positives.

Prec = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)

The Matthews Correlation Coefficient
(MCC) (Chicco and Jurman 2020) is cal-
culated as follows:

MCC = 𝑇𝑃 𝑇𝑁−𝐹𝑃 𝐹𝑁
√𝑇𝑃𝑆 𝑇𝑃𝑁

𝑇𝑃𝑆 = (𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁)

𝑇𝑃𝑁 = (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)

As the MCC does not fully capture the dis-
proportionate gain of either Sens or Spec
compared to the other, we included the
Balanced Classification Rate (BCR) (Gar-
cía et al. 2009) and No Information Rate
(NIR) (Bicego and Mensi 2023). BCR is the
average of Sens and Spec, so a large gain
in Sens with a small loss in Spec will still
yield a better BCR.

BCR =
(Sens + Spec)

2

One could say that NIR is something like
an estimate of themost common classwith-
out any information and serves as a base-
linemetric. If for example 70%of the data is
class A and 30% is class B, then estimates of
class A would every time yield an accuracy
of 70%. The NIR, in this context, represents
this baseline accuracy. Therefore, the NIR
is used to compare model accuracy against
a baseline. If the accuracy (Acc) surpasses

the NIR greatly, it has significant predictive
power. Therefore, Acc and NIR should be
viewed together. The Acc is calculated as
the ratio of the sum of true positives and
true negatives to the total number of cases.

Acc = (𝑇𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

R squared gaining

The extension called R-squared gaining
(rsg) follows the concept of aiming at im-
proving a specific scoring measure. In rsg,
the aim is to maximize the gain in adjusted
R-squared values obtained with the lm
function in the stats package of base R. The
R-squared value represents the proportion
of variance of the response variable, here
the target node, that is explained by the
predictor variable(s), or the source node(s).
The normal R-squared statistic refers to the
sample and the adjusted R-squared value
to an estimate in the population (Miles
2005).
For every node i in the graph, rsg searches
for candidate nodes with which a new
edge appears meaningful, with respect to
their original correlation coefficients and
p-values, which are output by default snha.
Then, a linear regression model was fitted
with the node i as response variable and
the already connected node(s) as predic-
tor variable(s). A second model included
the candidate node as additional predictor
variable. If the second model resulted in
an adjusted R-squared value higher than
the first model, and if the difference was
over a specified threshold, then the edge
between the node i and the candidate node
was added to the graph. This threshold was
the only parameter in this extension and
consequently, it was tested for a range of
values.
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Linear model check

Anothermethod, linearmodel check (lmc),
has been implemented for this project.
After obtaining a predicted graph, for ex-
ample via the default snha, using linear
models to check the obtained snha graph
to the data, edges will be removed by lmc if
they do not add more than a set threshold
of the adjusted R-squared value.We set the
default threshold to two percent.

Combinations

The novel approach in this project was
the combination of extensions of snha, as
weaknesses and strengths of each method
may balance each other out.
Multiple combinations of extensions were
tested. A combination of rsg and lmc was
thus denoted as rsg_lmc, which initially
applied rsg followed by lmc and lmc_rsg
follows the same naming-logic in inversed
order, meaning that we first applied lmc
and then rsg. That means that lmb com-
bined lmc and bootstrapping (boot) and
boot_lmc_rsg combined boot, lmc and rsg.
Afterwards, pairwise t-tests were con-
ducted to compare whether the exten-
sions significantly outperformed or un-
derperformed compared to the default
snha. These t-tests were performed in a
paired manner with each individually cre-
ated graph at each run. This enhanced the
comparability as a particularly poor predic-
tion on a “harder graph”, e.g. containing
diamond and triangle patterns, which are
more challenging to resolve, will not be
compared against a good prediction of a
different method on an “easy graph”. Due
to the nature of the Barabasi graph gener-
ation, some randomness can be expected,
which enabled the possibility of creating
graphs of varying difficulty in regard to the
ramifications.

Results

Overview

Interestingly using huge data generation
yielded better results for the methods from
the huge package. Both ct and mb bene-
fited heavily from using the synthetic data
generated by the huge function, whereas
performance was worse when using our
generated data. All other methods did not
show this trend, thus we decided to only
include results using Novine’s MC data
generation (Novine et al. 2022).
The new extensions yielded better results,
especially combinations of rsg and lmc
in either orientation. Using both subse-
quently generally produced better results
than each method in isolation when re-
garding the MCC. Compared to the ref-
erence methods of the huge, qgraph and
ergm packages, our methods seem to con-
sistently strike a better balance between
Sens and Spec, since neither of those two
metrics dips below 0.5 for any combina-
tion of snha extensions. A comprehensive
overview can be seen in Figure 3.

Matthews correlation coefficient and

balanced classification rate

Barabasi M1.5

Figure 4 shows a box and whiskers plot for
the MCC and the BCR. Within the scope
of MCC, it is observed that the boxes are
generally quite elongated for all methods.
This observation implies a lack of consis-
tency across the performance of all meth-
ods.
When considering the BCR, the subpar per-
formance of the hugemethods, specifically
mb and ct, becomes apparent. Despite their
high Spec, their Sens is low, which results
in a diminished BCR. Conversely, the com-
binations of lmc and rsg, along with boot,
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Figure 3 Heatmap showing the means of 10 runs of M1.5 with

20 nodes for Sensitivity (Sens), Specificity (Spec), Matthews cor-

relation coefficient (MCC), Balanced Classification rate (BCR),

time in seconds and accuracy (Acc) for network reconstruc-

tion methods huge correlation threshold (huge_ct), huge lasso

(huge_lasso), huge Meinshausen-Bühlmann (huge_mb) , qgraph

glasso with bic (qg_bic), qgraph glasso with ebic (qg_ebic), expo-

nential random graph models (ergm), St. Nicolas House Analysis

(snha) and its extensions Linear Model Check(lmc), R-squared

Gaining(rsg) and bootstrapping (boot).The Null Information Rate

(NIR) to compare against is 0.85.

emerge as some of the top performers in
terms of BCR. This suggests that these com-
binations are more adept at striking a bal-
ance between Sens and Spec. Additionally,
as visible in Figure 1, the MCC was not al-
ways calculable for qgraph lasso with bic or
ebic as selection criterion.
For M1.5, the range was between 0.8 and
0.9. In all cases, the default shna fell short
when compared to boot, lmc, rsg, and com-
binations of these three.
The paired t-tests for BCR, presented inTab.
1, reveal that most combination methods
incorporating lmc significantly outperform
the default snha. In contrast, qgraph lasso

with bic and ebic, as well as huge ct and
mb, perform significantly worse than the
default snha. It becomes evident that com-
binations involving at least either boot or
lmc tend to perform better than the default
snha.

Wernerextended

Figure 5 provides a visual representation
of the predicted Wernerextended (WX)
graphs using default snha, lmc, lmc_rsg,
lmb_rsg and qgraph lasso. The results ob-
served in the Barabasi graphs are mirrored
in these graphs. Specifically, qgraph pre-
dicts fewer edges, but all of them are cor-
rectly identified. In contrast, our methods
predict a larger number of edges, some of
which are incorrectly predicted. The num-
ber of mistakes decreases with the addition
of more extensions, but an edge at the end
of the branching path between nodes I and
K is added for both lmc_rsg and lmb_rsg.
The challenges previously encountered
with the triad consisting of nodes D, E, and
F have been addressed by the combination
of extensions. The branching path origi-
nating from node G can also be correctly
identified by these combination methods.
Interestingly, with bootstrap, lmb_rsg can
also reconstruct the diamond-like struc-
ture, correctly assigning both edges to
nodes A and B from node M.
qgraph, on the other hand, can solve the
diamond-like structure and the path from
nodeC to nodesD andF.However, it fails to
correctly identify the triad and the branch-
ing path.
As evident in Figure 6, default snha and
qgraph glasso are the least effective at pre-
dicting theWXgraphbased on theBCRand
MCCmetrics. However, they are the fastest
methods in terms of computational time.
The combination methods, on the other
hand, perform well, with boot_lmc_rsg,
lmc_rsg, rsg_lmc and boot_lmc_rsg emerg-
ing as the top performers. These methods
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Figure 4 Box and whiskers plot of Matthews correlation coefficient (MCC) and Balanced Classification rate (BCR) for M1.5 using various

network reconstruction methods. Different methods are colorcoded as follows: huge functions are red, qgraph functions are magenta,

singular extensions of St. Nicolas House Analysis (snha) and default snha are blue and combinations of extensions are green.

maintain a high Sens while achieving a
very high Spec. While their Spec, at 0.98, is
slightly lower than qgraph’s perfect score
of 1.00, their Sens, ranging from 0.95 to
0.97, is significantly higher than qgraph
lasso’s Sens of 0.6.
The combination methods exhibit better
Sens compared to default snha and are
close in terms of Spec, indicating that they
detected more edges. This observation, in
conjunction with Figure 5, confirms that

the ramifications that were discovered in-
deed correspond to the additional edges
detected.

Time

All bootstrap variants exhibit a slowdown,
with their computational times being at
least an order of magnitude greater than
the others. The huge methods utilizing
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the star selection criterion also demon-
strate a similar behavior. While rsg_lmc
and lmc_rsg perform within an acceptable
timeframe, they are noticeably slower than
the default snha.
The default snha and singular extensions
require a second or less of computational
time. Combinations of rsg and lmc take
less than 3 seconds, but adding boot to the
mix increases the computational time to
between 5 and 6 seconds for M1.5.
For M1.5 graphs with 20 nodes, the default
snha takes approximately 0.095 seconds,
while the boot_lmc_rsg combination re-
quires an average of 5.72 seconds. This
equates to nearly a 60-fold difference in
computational time.

Discussion

The original intent of snha was to provide
a quick overview of one’s data, assisting

in hypothesis generation and uncovering
intriguing connections between variables.
Due to this project and the expansion of
extensions for snha, various aspects have
changed, such as the computational time
requirement.
Given the graph sizes we are dealing with,
the additional time investment required
for improved results is acceptable. While
the computational time might become a
concern for larger graph sizes, we antici-
pate that the number of variables we need
to predict will not be so large as to make
computational time a significant issue. To
put it into perspective, if we were to equate
the amount of synthetic data we created
for 20 nodes (each with 200 data points)
to real-world data, it would be roughly
equivalent to the sample sizes in clinical
placebo-controlled trials, which typically
measure fewer than 20 parameters across
several dozens to hundreds of patients, an
example would be trials for supplements

Table 1 Paired t.tests for Balanced Classification rate(BCR) in M1.5 with 20 nodes comparing network reconstruction methods against

default St. Nicolas House Analysis (snha_def). These include snha with bootstrapping (boot), Linear Model Check (lmc), lmc and boot

(lmb), huge correlation threshold (huge_ct), huge lasso (huge_lasso), huge Meinshausen-Bühlmann (huge_mb) and qgraph lasso with

either bic or ebic (qg_bic and qg_ebic).

estimate conf.low conf.high p.value

snha_def_vs lmc_1.5 0.012 -0.008 0.032 0.210

snha_def_vs lmb_1.5 -0.029 -0.054 -0.005 0.023

snha_def_vs boot_1.5 -0.043 -0.066 -0.020 0.002

snha_def_vs rsg_1.5 -0.046 -0.068 -0.025 0.001

snha_def_vs rsg_lmc_1.5 -0.027 -0.060 0.006 0.102

snha_def_vs

boot_rsg_lmc_1.5
-0.028 -0.049 -0.006 0.016

snha_def_vs lmc_rsg_1.5 -0.030 -0.068 0.007 0.096

snha_def_vs

boot_lmc_rsg_1.5
-0.033 -0.056 -0.010 0.010

snha_def_vs huge_ct_1.5 0.253 0.215 0.292 0.000

snha_def_vs

huge_lasso_1.5
-0.047 -0.088 -0.006 0.028

snha_def_vs huge_mb_1.5 0.253 0.215 0.292 0.000

snha_def_vs qg_ebic_1.5 0.257 0.210 0.305 0.000

snha_def_vs qg_bic_1.5 0.155 0.046 0.264 0.011
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Figure 5 Applying different graph estimation methods on Wernerextended (WX) graph. A: original WX, B: default St. Nicolas House

Analysis (snha), C: Linear Model Check (lmc), D: lmc and R-squared Gaining (rsg), E: Linear Model Check with Bootstrapping (lmb) and

rsg, F: qgraph lasso

which typically have less than 50 partici-
pants (Wu et al. 2022).
As demonstrated in previous works by Bo-
denberger (Bodenberger) andMoris (Moris
2023), both bootstrapping and rsg outper-
form the default snha. Not surprisingly,
the combination of bootstrapping with lmc
and rsg consistently yielded the best results
in Barabasi graphs of varying densities and
in the WX graph.
Our results suggest that rsg may be prone
to detecting too many edges, as indicated
by its high sensitivity and slightly lower
specificity. Similarly, some methods have

been noted for their propensity to infer a
higher number of connections, that may
not reflect true biological interactions. For
example, Bayesian network approaches are
powerful for inferring causal networks but
can sometimes result in the construction
of overly complex networks, especially
when dealing with extensive systems ge-
netics data. The complexity of diseases
like Alzheimer’s or type 2 diabetes often
requires careful consideration of gene-to-
gene and gene-to-environment interac-
tions (Tasaki et al. 2015). Methods devel-
oped to simulate co-expression data and
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Figure 6 Heatmap showing the means of 10 runs of

M1.5 with 20 nodes for Sensitivity (Sens), Specificity (Spec),

Matthews correlation coefficient (MCC), Balanced Classifi-

cation rate (BCR),time in seconds and Accuracy (Acc) for

network reconstruction methods huge correlation threshold

(huge_ct), huge lasso (huge_lasso), hugeMeinshausen-Bühlmann

(huge_mb) , qgraph glasso with bic (qg_bic), qgraph glasso

with ebic (qg_ebic), exponential random graph models (ergm)

, St. Nicolas House Analysis (snha) and its extensions Linear

Model Check(lmc), R-squared Gaining(rsg) and bootstrapping

(boot).The Null Information Rate (NIR) to compare against is

0.80.

evaluate the performance of various net-
work reconstruction models may also ex-
hibit tendencies to generate networks with
high edge counts, especially under con-
ditions of varying noise levels and sample
sizes. This overestimation can be attributed
to the assumptions inherent in the gener-
ative models used for simulation and the
performance metrics applied to evaluate
method outcomes (Tasaki et al. 2015).
Conversely, lmc appears to exhibit the op-
posite trend. Interestingly, when combined,
they seem to balance each other out, while
also being faster than any variant of the
bootstrap extension.
The less elongated boxes of BCR compared
to those of MCC indicate less variability in

the BCR scores across different methods.
This could suggest that BCR might be a
more effective metric overall, providing a
more consistent measure of performance
across different network reconstruction
methods. This consistency could make
BCR a more reliable metric for compar-
ing the effectiveness of different methods,
particularly when the goal is to achieve a
balance between sensitivity and specificity.
“Stability Indicators in Network Recon-
struction” discusses the variability of net-
work reconstruction methods which might
imply similar observations about the sta-
bility and reliability of metrics (Filosi et al.
2014).
In the context of the MCC scores, it is
worth noting that the huge lasso method
shows a peculiar trend of a slight increase
in MCC as the graphs become denser. This
could suggest a better performance of huge
lasso in denser graphs. This observation
aligns with expectations from network re-
construction methodologies, where denser
connectivity patterns may provide more
data points for lasso-based methods to
leverage, potentially leading to more accu-
rate edge prediction. For comprehensive
insights into lasso methodologies and their
applications in dense graph scenarios, the
works by Tibshirani (Tibshirani 1996) on
regression shrinkage and selection via the
lasso and Meinshausen and Bühlmann
(Meinshausen and Bühlmann 2006) on
high-dimensional graphs and variable se-
lection with the lasso provide foundational
understanding.
Another unique behavior observed only
in huge mb, ct, and lasso methods is their
tendency to either have a sensitivity or
specificity very close to 0 or 1. This indi-
cates that these methods either predict the
existence of all possible edges within a
given graph or predict a single edge with
a high degree of certainty. Chen and Mar
(Chen and Mar 2018) bring insight into
the sensitivity and specificity trade-offs
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in network reconstruction and discuss
evaluation metrics in the context of gene
regulatory network inference. Similar to
our testing, Chen and Mar (Chen and Mar
2018) obtained strongly varying networks
for different reconstruction methods.
It is notable that the original publications
on huge methods may not explicitly dis-
cuss the tendency to polarize sensitivity or
specificity (Zhao et al. 2020). This gap sug-
gests an opportunity for future research to
explore the conditions under which huge
methods, particularly in the context of mb,
ct, and lasso variants, lean towards these
extremes.
Efforts to optimize the current rsg exten-
sion have so far resulted in a slight decrease
in computational time at the expense of per-
formance. Potential improvements to rsg,
aimed at reducing the number of falsely
predicted edges, could include changing
the current threshold to selection criteria
that disproportionately penalize the in-
clusion of more parameters, such as the
Akaike Information Criterion (AIC) (Boz-
dogan 1987).

5. Conclusion

The inherent ability of the default snha to
identify long chains has been preserved in
our combination approaches. Therefore,
we conclude that our recent combination
methods have led to improvements in de-
tecting ramifications and enhancing the
overall prediction quality of graphs. This
suggests that these combination methods
are not only capable of maintaining the
strengths of the default snha, but also of
addressing its limitations, thereby provid-
ing a more comprehensive and accurate
network reconstruction.
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