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Abstract 

Background Resource disparities are common in social networks, of- 
ten driven by competitive interactions. Exploring how interventions 
like taxation influence these inequalities can reveal mechanisms for 
more balanced distributions. 
Objectives This study investigates the effects of a 10% tax rate and re- 
distribution on inequality and resource stability within two network 
models: the ‘Winner-Loser Model’ which intensifies hierarchies 
through competitive interactions, and the ‘Null Model’, simulating 
equal opportunity exchanges. 
Sample and Methods We used Monte Carlo simulations with agents 
starting at equal resource levels, interacting under the rules of each 
model. Taxation effects were measured through Gini coefficients and 
Lambda stability scores across various network sizes. 
Results Taxation reduced Gini coefficients in both models, promot- 
ing more balanced distributions. Lambda values indicated that taxa- 
tion improved stability, especially within the ‘Winner-Loser Model’, 
by diminishing extreme resource accumulation. 
Conclusions The study demonstrates that while competitive dynam- 
ics naturally drive inequality, taxation and redistribution mecha- 
nisms can stabilize and reduce disparities. These findings suggest 
that even simple redistribution can reduce hierarchical resource 
concentration and counteract extreme inequalities in networked 
settings. 

Take-home message for students Even a 10% tax can redistribute wealth and foster stability in resource 
exchanges, promoting more equitable outcomes; however, it does not entirely resolve the underlying 
issues of inequality. 
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Introduction 

Understanding the relationship between 
social network structures and resource 
distribution is essential for addressing 
modern inequality, a key determinant of 
human health and development. Resource 
disparities within networks influence ac- 
cess to nutrition, healthcare, and social 
support, factors that critically shape health 
outcomes and public health interventions 
(World Health Organization 2003). The dis- 
tribution of resources, wealth, and power 
significantly affects human well-being. 
Inequities in these distributions often ex- 
acerbate social and economic inequalities, 
which in turn affect population health 
(Wood et al. 2021). 
Social network theory provides a valuable 
framework for analyzing how structural 
features, such as clustering, centraliza- 
tion, and hierarchy, influence the flow of 
resources and power within communi- 
ties (Jackson and Rogers 2007; Mitchell 
2006). These structural characteristics de- 
termine access to health-related resources, 
including clean water and medical care, 
and shape broader public health outcomes. 
Network-based resource allocation plays a 
role in the equitable distribution of public 
health resources, where a more egalitarian 
network structure tends to provide better 
outcomes for vulnerable populations (Chi- 
ang 2015). In complex systems, clustering 
strengthens local connectivity, which can 
facilitate rapid information and resource 
exchange, yet it also risks reinforcing in- 
equalities if certain groups monopolize 
resources (Luthra and Todd). Hierarchical 
structures further concentrate resources 
and power in the hands of central or el- 
evated positions, leading to more uneven 
distribution across the network (Davis et al. 
2020; Jackson and Rogers 2007). The dy- 
namics of inequality become particularly 
evident when comparing network types. 

Networks with fixed, clustered structures, 
as seen in models like the ‘Winner-Loser’, 
often generate significant disparities. In 
this model, initial advantages amplify 
over time, allowing “winners” to accu- 
mulate disproportionate resources while 
marginalizing others (Mesterton-Gibbons 
et al. 2016; Tsvetkova et al. 2018). Despite 
an initially equal distribution of resources, 
this model reinforces cycles of inequality 
that align closely with observed patterns 
in human hierarchies and socioeconomic 
stratification (Hermanussen et al. 2023). 
Conversely, the ‘Null Model’ provides a 
baseline by simulating random, unbiased 
interactions, reducing the likelihood of en- 
trenched advantages or resource centraliza- 
tion (Hermanussen et al. 2023; Tsvetkova 
et al. 2018). 
To understand network structures and 
their dynamics, existing research has 
focused on several foundational mecha- 
nisms in social network formation, such as 
homophily, opportunity constraints, and 
structural balances (Lewis 2015). Graph 
theory has proven indispensable in this 
field, providing core analytical concepts 
such as centrality (identifying influential 
nodes), clustering (evaluating node inter- 
connectedness), and resilience (assessing 
a network’s adaptability to disruption), 
which have been instrumental in studying 
social and biological networks (Arul et al. 
2023; Gamboa 2023). Emerging methods, 
such as triadic motif analysis, offer deeper 
insights into cooperation, resource sharing, 
and interaction patterns within networks, 
further enriching our understanding of 
resource dynamics (Pinter-Wollman et al. 
2014; Shizuka and McDonald 2015). 
This study extends these frameworks by 
examining how taxation – a systemic in- 
tervention widely recognized for its role 
in redistributing wealth and reducing so- 
cial inequities (Duff 2008; Mohs 2019) – 
affects inequality and network structures. 
Redistribution through taxation not only 
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reduces disparities but also promotes equi- 
table access to essential resources, which is 
vital for improving public health outcomes 
(Lee and Lee 2023; Maynard 2014). Here, 
we use taxation as a model to explore how 
systemic interventions influence resource 
flows and network dynamics, with impli- 
cations for public health. 
We begin by analyzing resource flows 
among agents in networks of varying sizes 
under two distinct interaction models. In 
the ‘Winner-Loser Model’, interactions are 
shaped by a state-dependent feedback sys- 
tem, where previous successes increase the 
likelihood of future resource accumula- 
tion, fostering hierarchical dynamics. Con- 
versely, the ‘Null Model’ assumes random, 
unbiased exchanges, where resource flows 
are independent of prior outcomes, result- 
ing in more egalitarian structures. To assess 
the impact of systemic intervention, we in- 
troduce a recurring 10% tax on resources 
within the network, with the collected 
tax redistributed equally among all mem- 
bers. Through Monte Carlo simulations, 
we conduct repeated trials to observe how 
resource exchanges evolve over time un- 
der these conditions. This approach allows 
us to evaluate the effects of redistribution 
on inequality, network structure, and the 
stability of resource distribution, offering 
insights into the potential of taxation to 
mitigate disparities and foster resilience in 
social systems. 

Materials and Methods 

Simulation Framework and Data 

This study investigates the impact of tax- 
ation on resource distribution and social 
interactions within artificial societies, com- 
paring two models: the ‘Winner-Loser 
Model’ and the ‘Null Model’, following the 
framework by (Hermanussen et al. 2023). 

Simulation Setup 

A Monte Carlo approach is used to sim- 
ulate randomness in social interactions. 
Agents, representing members of the sim- 
ulated society, interact according to the 
rules of the chosen model. The simula- 
tions include populations of 10, 20, 50, 100, 
or 200 agents. Each agent starts with 50 
tokens to ensure a balanced initial state, 
equal for all agents, across all models and 
strategies. Tokens symbolize an agent’s 
resource-holding power (RHP), reflecting 
their ability to acquire, hold, and exchange 
resources within the simulated society. 
Interaction partners are selected from 
nearby neighbors, mimicking localized 
social interactions within a predefined 
region. The selection of interaction part- 
ners is randomized within the constraints 
of this localized network. Each iteration 
starts with a randomly selected agent and 
proceeds sequentially through the network 
until each agent has chosen an interaction 
partner and competed for resources. Each 
agent is required to choose one interaction 
partner per game round, but particularly in 
smaller networks, some agents may com- 
pete more frequently, as they select their 
own partners but can also be chosen again 
by others within the same game round. 
For each iteration, there will be 10 game 
rounds, allowing each agent to select an 
interaction partner 10 times. 
The whole process is completed with 30 it- 
erations, in the following referred to as one 
full simulation. Each simulation scenario is 
repeated five times with different random 
seeds to ensure diverse outcomes and miti- 
gate the influence of any biases from initial 
conditions. 
We will walk through one iteration of an ex- 
emplary network of 4 agents, all holding an 
initial RHP of 50, presented in Algorithm 1. 
From here, the next iteration would start 
or, if applied, the taxation process. But im- 
portantly, in either model, if an agent has 
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Figure 1 Self-illustrated graphical overview of the simulation workflow, shown is one iteration. A simulation consists of 30 iterations. 
Before starting, parameters such as i) sample size and number of neighbors, ii) model type, and iii) tax rates are set. Each combination 
is simulated for 30 iterations, with visual and numerical output collected at defined intervals. This process is repeated 5 times using 
different random seeds to ensure varied outcomes 

0 tokens, they become inactive in terms of 
participation because they cannot provide 
tokens for interactions. If an agent remains 
at 0 tokens for too long without any mech- 
anism to gain tokens (like redistribution), 
they will not be able to participate in fu- 
ture rounds. Furthermore, the number of 
tokens in the system does not change. In 
the given example, a total of 200 tokens (4 
agents, 50 token each) are moving in the 
system. 

Interaction Models 

The ‘Null Model’ acts as a baseline, simu- 
lating a scenario where all individuals in a 
group have an equal chance of gaining re- 
sources, without any biases or preferences 
influencing interactions. It is expected to 
lead to social networks with no dominance 
hierarchies, as every individual has an 
equal opportunity to acquire resources, 
and prior encounters do not impact future 
interactions. The exchange of resources (to- 
kens) is essentially random, driven purely 
by chance. This model is particularly useful 
for understanding how inequality or hier- 
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Algorithm 1 

Starting game 1 with tokens: 50, 50, 50, 50 
Interaction between Agent 1 and 3 (Agent 1 wins): Agent 1 = 60, Agent 3 = 40 
Interaction between Agent 2 and 4 (Agent 2 wins): Agent 2 = 60, Agent 4 = 40 
Interaction between Agent 3 and 2 (draw): Agent 3 = 50, Agent 2 = 50 
Interaction between Agent 4 and 3 (Agent 3 wins): Agent 4 = 30, Agent 3 = 60 

Final token after all interactions: 60, 50, 60, 30 
Starting game 2 with tokens: 60, 50, 60, 30 

Interaction between Agent 1 and 2 (Agent 2 wins): Agent 1 = 50, Agent 2 = 60 
Interaction between Agent 2 and 1 (Agent 2 wins): Agent 2 = 70, Agent 1 = 40 
Interaction between Agent 3 and 1 (Agent 3 wins): Agent 3 = 70, Agent 1 = 30 
Interaction between Agent 4 and 2 (Agent 2 wins): Agent 4 = 20, Agent 2 = 80 

Final token after all interactions: 30, 80, 70, 20 
[…] 
Starting game 10 with tokens: 0, 100, 60, 40 

Interaction between Agent 1 and 3 (no interaction): Agent 1 = 0, Agent 3 = 60 
Interaction between Agent 2 and 4 (Agent 2 wins): Agent 2 = 110, Agent 4 = 30 
Interaction between Agent 3 and 1 (no interaction): Agent 3 = 60, Agent 1 = 0 
Interaction between Agent 4 and 2 (Agent 4 wins): Agent 4 = 40, Agent 2 = 100 

Final token after all interactions: 0, 100, 60, 40 

archies might emerge (or fail to emerge) 
purely due to stochastic processes in the 
absence of systemic biases or preferential 
interactions. By controlling for these ex- 
ternal factors, the ‘Null Model’ provides a 
neutral environment to assess the intrinsic 
dynamics of resource distribution. 
The ‘Winner-Loser Model’ represents a 
more competitive social system, in which 
past interactions and outcomes shape fu- 
ture success. In this model, the exchange 
of tokens becomes biased toward individ- 
uals who have previously succeeded, rein- 
forcing dominance hierarchies over time. 
Success in earlier interactions increases 
the probability of future success, as win- 
ning agents are more likely to gain tokens. 
This mechanism, akin to the “Matthew 
Effect” (Merton 1968), amplifies initial 
advantages, creating a feedback loop that 
drives inequality. For instance, agents who 
accumulate tokens early on are likely to 
continue gaining tokens, thus further ce- 
menting their dominance in the network. 
In contrast, losing agents face a compound- 
ing disadvantage, as their ability to gain re- 
sources diminishes over time. This model 
aligns with the findings of (Hermanussen 
et al. 2023), which demonstrated that ini- 

tial advantages in resource accumulation 
lead to increased dominance and power im- 
balances by incorporating a feedback loop 
that mimics real-world processes where 
initial advantages are magnified. 
Both models operate within localized so- 
cial networks (i.e., agents interact primar- 
ily with nearby neighbors rather than the 
entire population), reflecting real-world 
constraints on social interactions, such as 
geographical proximity or communication 
limitations. Throughout the simulation, 
agents exchange tokens based on the prin- 
ciples of each model, with tokens repre- 
senting an agent’s resource-holding power 
(RHP). Over time, the ‘Null Model’ is ex- 
pected to result in a more egalitarian dis- 
tribution of tokens, as random exchanges 
tend to balance out disparities. In contrast, 
the ‘Winner-Loser Model’ should give rise 
to the formation of dominance hierarchies, 
highlighting how even minor differences 
in resource accumulation can escalate, 
leading to larger power imbalances within 
the network. 
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Taxation and Redistribution 

Taxation and the redistribution of re- 
sources are used to mitigate resource ac- 
cumulation and prevent dominant individ- 
uals from monopolizing resources entirely. 
Such mechanisms and behaviors can be 
as simple as food sharing. They help bal- 
ance access to resources and keep a group 
functioning harmoniously despite inher- 
ent social hierarchies. 
In the simulation, a 10% tax is applied to 
the tokens (RHP) of agents after all rounds 
of competition are completed (10 interac- 
tions per agent). The total collected tax 
gets redistributed into the system, equally 
divided among all members of society, with 
the remainder being carried over into the 
next iteration. The exact tax amount is cal- 
culated by multiplying an agent’s token 
count by 10%, rounded to the nearest inte- 
ger. Within the 30 iterations, the taxation 
and redistribution process will be applied 
repeatedly, totaling 30 instances across the 
entire network. Agents with fewer than 5 
tokens will be excluded from the tax col- 
lection; however, all agents, regardless of 
their token count, are entitled to receive an 
equal share of the redistributed tax. This 
approach ensures that while each agent 
benefits from an equal portion of the rein- 
vested tokens, those with a higher RHP 
contribute proportionally more to the col- 
lective fund. 
Proceeding with the example above of a net- 
work of 4 agents and 10 completed game 
rounds (1 iteration), the taxation process 
would apply as presented in Algorithm 2. 
With increased tokens in the system, due 
to bigger networks, it happens more often 
that the tax is not exactly redistributable. 
The carried-forward remainder ensures 
that any leftover tokens are not lost, but 
can be reused in the subsequent iteration. 
This mechanism aims to create a more eq- 
uitable token distribution over time while 
still accounting for individual contribu- 

tions and maintaining agent engagement 
in the game. In our example, Agent 1 will 
soon be able to participate in interactions 
again, made possible by taxation and redis- 
tribution. 

Analysis 

Visual Networks 

Visualizations of the structure of the net- 
works generated during iteration play a key 
role in interpreting the dynamics in the 
simulations. The networks are depicted by 
nodes (agents) and edges (interactions or 
exchange of tokens between agents). The 
nodes are color coded, depending on the 
agents’ RHP: 
• Green: ≤10 token 
• Orange: 11 to 90 tokens 
• Red: > 90 token 
Edges between nodes indicate the direc- 
tion of token transfer, with arrows point- 
ing from the receiving to the subordinate 
agents. The network structure reveals prop- 
erties such as degree of centrality (how 
connected an agent is), indicating which 
agents act as resource hubs. 
The agents are designed to connect with 
nearby individuals (neighbors) in a manner 
that causes the concentration of connec- 
tions toward the periphery of the network. 
Each agent looks ten positions to the left 
and ten to the right (five in 10-agent net- 
works) for potential interaction partners. 
In smaller networks, this search radius 
often covers most, if not all, agents, lead- 
ing to a denser and more interconnected 
visual representation. However, in larger 
networks, the same search behavior results 
in a more pronounced ring formation, as 
each agent’s limited visibility restricts their 
connections. 
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Algorithm 2 

Final token after all interactions: 0, 100, 60, 40 
Calculate the 10% tax amount: 

Agent 1: 0 * 0.1 = 0 
Agent 2: 100 * 0.1 = 10 

Agent 3: 60 * 0.1 = 6 
Agent 4: 40 * 0.1 = 4 

Total collected tax: 10 + 6 + 4 = 20 
Equal redistribution: 20/4 = 5 
Remainder: 20 % 4 = 0 
Final token after redistribution: 

Agent 1: 0 + 5 = 5 
Agent 2: 90 + 5 = 95 
Agent 3: 54 + 5 = 59 
Agent 4: 36 + 5 = 41 

The remainder of 0 is stored for the next iteration. 

Triad Structures 

Triad motifs refer to small groups of three 
agents and the relationships between them, 
revealing how resources are shared or mo- 
nopolized within the network. By analyz- 
ing these triads, we can better understand 
how groups form, assert dominance, and 
how power dynamics are influenced by 
the uneven distribution of resources. To 
observe how network dynamics shift and 
hierarchies evolve – especially when af- 
fected by taxation and resource redistri- 
bution – we focus on five types of triads 
(Hermanussen et al. 2023; Shizuka and 
McDonald 2015): 
• Double Dominant (dd): occurs when 

two agents are dominated by a third, 
signaling a concentration of power 
among a few agents. 

• Double Subordinate (ds): when two 
agents consistently dominate a third, 
reflecting a scenario with dominant 
agents and a smaller group of subordi- 
nates. 

• Pass-Along (pa): resources are trans- 
ferred linearly from one agent to an- 
other, indicating hierarchical yet non- 
cyclic relationships. 

• Transitive (tr): resources are ex- 
changed in a self-contained sequence, 

creating a stable and transparent struc- 
ture. 

• Cyclic (cy): resources circulate among 
three agents in a balanced, reciprocal 
manner, without a clear hierarchy. 

Radar charts visualize triad structures, 
with each axis corresponding to one of the 
five triad types. The sum of all occurrences 
across these triads is used as the maximum 
limit for all axes, allowing for proportional 
comparison of each triad type in that itera- 
tion. 

Measurements of Inequality 

To quantify and visualize inequality in to- 
ken distribution and system stability, we 
use two key methods: the Gini coefficient 
(Gini 1912) and a factor we call “Lambda”. 
Lambda (𝜆) tracks how smoothly resources 
flow through the network over time. It 
measures the average difference in token 
counts between two time points, 𝑡0 and 𝑡1 
for all agents in the system. The formula 
for Lambda is: 

𝜆 = 1
𝑛 

𝑛 
∑
𝑖=1

||tokens𝑡0,𝑖 − tokens𝑡1,𝑖||

Where: 
• 𝑛 is the total number of agents 
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Figure 2 Self-illustrated visual representation of the five triad structures double dominant, double subordinate, pass-along, transitive 
and cyclic (left to right) 

• tokens𝑡0,𝑖and tokens𝑡1,𝑖 represent token 
count for agent 𝑖 at times 𝑡0 and 𝑡1. 

Lambda provides a measure of how much 
the token distribution changes over time. A 
Lambda of 0 means there is no change in 
token distribution between time points, in- 
dicating complete stagnation and lack of re- 
source movement – this is undesirable, as it 
implies no dynamics or interaction. Higher 
Lambda values indicate larger shifts in re- 
sources, reflecting more volatility in the sys- 
tem, while lower values suggest smoother, 
more equitable exchanges. 
While Lambda tells us how stable or 
chaotic the interactions and resource shifts 
are, Gini focuses on inequality. The Gini 
coefficient, ranging from 0 (perfect equal- 
ity) to 1 (maximum inequality), provides a 
quantification of inequality. For instance, 
a Gini of 0.2 suggests that the majority 
(0.8) of a society shares the resources rel- 
atively equally. The Lorenz curve (Lorenz 
1905) complements the coefficient by vi- 
sually representing inequality, plotting the 
cumulative percentage of agents against 
the cumulative percentage of tokens they 
hold. The area between the Lorenz curve 
and the diagonal corresponds to the Gini 
coefficient, with a larger area indicating 
greater inequality. Plotted Lorenz curves 
can be found in the supplemental materi- 
als (“Supplementary_Plots.docx”). To track 
how resources shift over time and how tax- 
ation impacts concentration, we utilize bar 

plots to show token distributions at the 
start and after every 100 interactions (10 
iterations). 

Results 

Gini Coefficient and Network 

Structure without Redistribution 

The Gini coefficient, quantifying inequal- 
ity, reaches extreme levels in the ‘Winner- 
Loser Model’. In smaller networks (Figure 
3C), the Gini coefficient rapidly increases 
from 0.62 to 0.9 within the first 20 iter- 
ations. Larger networks follow a similar 
trend, rising from 0.56 to 0.91 after 30 iter- 
ations (Figure 3D). In contrast, the ‘Null 
Model’ exhibits a more gradual increase in 
inequality. In 10-agent networks, the Gini 
coefficient starts at 0.4 and rises to 0.47, 
with fluctuations peaking at 0.64. Compar- 
isons with other runs show that, typically, 
the Gini coefficient progresses from 0.4 to 
approximately 0.6 with fewer fluctuations 
(Figure 3A). The larger network in the 
‘Null Model’ also follows a gradual trend, 
increasing from 0.32 to 0.55 (Figure 3B). 
Across five runs, the ‘Null Model’´ con- 
sistently maintains a Gini coefficient be- 
tween 0.3 and 0.6, reflecting more bal- 
anced resource distribution compared to 
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the ‘Winner-Loser Model’. In the latter, all 
simulations begin with a higher level of 
inequality and consistently reach a Gini co- 
efficient of approximately 0.9 by the 30th 
iteration (Table S1, S2 in supplements). 
In smaller networks, regardless of the 
model, the results of early iterations are 
more diverse. The small ‘Null Model’ starts 
with an even token distribution, as re- 
flected by the agents’ colors (≤ 10 tokens in 
green, 11 to 90 tokens in orange, and > 90 
tokens in red). However, as the simulation 
progresses, wealth begins to accumulate 
unevenly, with some agents gaining re- 
sources while others lose them (Figure 
3A). A similar process occurs in the ‘Win- 
ner-Loser Model’, but with greater orga- 
nization. In this model, a star structure 
emerges, with one central agent monop- 
olizing all resources (Figure 3C). While 
the ‘Null Model’ remains unstructured 
regardless of network size, the ‘Winner- 
Loser Model’ quickly creates structured 
networks where wealth accumulates in 
a few agents. Notably, the ‘Null Model’ 
maintains a relatively stable middle class 
(orange), while the ‘Winner-Loser Model’ 
rapidly diminishes this group, regardless of 
network size. 

Gini Coefficient and Network 

Structure with Redistribution 

In the 10% tax model, the network started 
with a relatively high Gini coefficient in 
the 10-agent network of the ‘Winner-Loser 
Model’ at 0.49; we observe some fluctua- 
tions reaching up to 0.59 before stabilizing 
at 0.51 by the 30th iteration (Figure 4C). 
Similar trends appear across all network 
sizes, where taxation and redistribution 
slow down the rise in inequality compared 
to simulations without these mechanisms. 
In contrast to outcomes without taxation, 
the Gini coefficient is notably suppressed 
in the ‘Winner-Loser Model’, (Figure 4C, 

D), with results resembling the inequality 
patterns seen in the ‘Null Model’ without 
taxation (Figure 3A, B). 
Taxation and redistribution also diminish 
inequality in the ‘Null Model’. In smaller 
networks, the Gini coefficient decreases 
from 0.38 to 0.31, while larger networks 
show values from 0.22 to 0.23 (Figure 4A), 
with only minor variations. Taxation and 
redistribution mechanisms encourage an 
even spread of resources across the net- 
work. As seen in Figures 3 and 4, agents 
rarely accumulate excessive wealth (red) or 
face extreme losses (green). Instead, most 
agents maintain a balanced resource level, 
represented by the dominance of orange 
nodes. The mechanism also mitigated the 
extreme stratification in ‘Winner-Loser 
Models’. Redistribution seems to prevent 
the collapse of the middle class, as orange 
nodes (agents with mid-range tokens) per- 
sist throughout the simulation (Figure 4C, 
D). 

System Stability 

As a general trend in the ‘Null Model’, 
Lambda fluctuates significantly in smaller 
networks but eventually stabilizes around 
20, particularly in larger ones. In contrast, 
the ‘Winner-Loser Model’ shows signifi- 
cant drops in Lambda values, which begin 
high and decrease quickly towards zero 
as resources concentrate in one or a few 
agents. In this model, Lambda often re- 
mains very low, with minimal fluctuations, 
and even reaches 0 in 10-agent networks 
(Figure 5). 
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Figure 3 Network Structures without taxation, Gini coefficient and bar plots representing the 
number of tokens per agent of run 1. A) ‘Null Model’ with 10 agents, B) ‘Null Model’ with 200 
agents, C) ‘Winner-Loser Model’ with 10 agents, D) ‘Winner-Loser Model’ with 200 agents 
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Figure 4 Network Structures with taxation, Gini coefficient and bar plots representing the num- 
ber of token agents of run 1. A) ‘Null Model’ with 10 agents, B) ‘Null Model’ with 200 agents, C) 
‘Winner-Loser Model’ with 10 agents, D) ‘Winner-Loser Model’ with 200 agents. 
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Figure 5 Run 1. Line graph with Lambda values (y-axis) measured over 30 iterations (x-axis) with 50 agents and no tax. ‘Null Model’ 
(left), ‘Winner-Loser Model’ (right) 

Figure 6 Run 1. Line Graph with Lambda values (y-axis) measured over 30 iterations (x-axis) with 50 agents and 10% tax. ‘Null Model‘ 
(left), ‘Winner-Loser Model‘ (right) 

Taxation and redistribution seem to cush- 
ion this drop, as well as lowering the high 
peak at the beginning of the simulation. 
The ‘Winner-Loser Model’ now stabilizes 
with some variations around 15 (Figure 6). 
The ‘Null Model’ is expressing a similar 
pattern, except for the peak in the very 
beginning and Lambda stabilizing around 
17 (Figure 6). However, as network size 
increases, the ‘Null Model’ demonstrates 
increased stability in Lambda, changing 
only one or two values over multiple itera- 
tions (e.g., fluctuating between a Lambda 
of 16 and 17). The ‘Winner-Loser Model’ 
achieves a similar level of stability only 
in the largest tested network size of 200 
agents. 

Triad Structure Formations 

Without any taxation system (Table 1), in 
the ‘Null Model’, pass-along triad interac- 
tions are constantly the most recurrent 
kind of triad structure, followed by double 
subordinate and double dominant interac- 
tions in smaller and larger networks with 
a constant distance. This pattern stays con- 
sistent when taxation and redistribution 
are applied, with just minor fluctuations 
(Table 2). 
The ‘Winner-Loser Model’ rapidly starts ex- 
pressing double dominant triad structures 
only, with the other ones being suppressed 
to a minimum (Table 1). This changes 
when taxation and redistribution are in- 
cluded (Table 2). In the ‘Winner-Loser 
Model’, transitive triad interactions become 
more prominent in smaller networks, fol- 
lowed by double subordinate, double dom- 
inant, and pass-along. As the networks 
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Table 1 Run 1, no taxation – data about expressed triad structures at chosen iterations for the network sizes 10, 50 and 200. ‘Neighbors’ 
refers to the number of agents from which the active agent selects competitors during each interaction, ‘dd’ = double dominant, ‘ds’ = 
double subordinate, ‘pa’ = pass-along, ‘tr’ = transitive, ‘cy’ = cyclic triad interaction pattern 

‘Null Model’ ‘Winner-Loser Model’ 

Iteration Agents Neighbors dd ds pa tr cy dd ds pa tr cy 

1 10 10 7 13 19 3 2 27 18 9 11 1 
10 10 10 3 5 12 2 2 50 0 0 7 0 
20 10 10 11 13 29 8 2 15 0 0 0 0 
30 10 10 15 9 24 15 9 36 0 0 0 0 
1 50 20 248 236 443 36 12 663 865 435 143 4 
10 50 20 326 298 594 47 17 810 177 85 38 0 
20 50 20 216 216 433 26 9 782 91 59 35 0 
30 50 20 245 238 526 45 13 934 113 78 31 0 
1 200 20 1131 1138 2273 175 58 2933 3315 2250 534 19 
10 200 20 1009 1054 2052 149 49 4271 946 485 199 0 
20 200 20 1156 1082 2158 164 61 2924 415 139 62 0 
30 200 20 1069 1065 2116 132 52 2789 306 138 68 0 

grow, transitive interactions decline and 
double subordinate triad structures take 
the lead, closely followed by double domi- 
nant and, with some distance, pass-along. 
We also observe that from a network size of 
50 agents, the expression of triad structures 
becomes more stable. The overall expres- 
sion pattern shows less drastic changes 
throughout the 30 iterations in both the 
‘Winner-Loser Model’ and the ‘Null Model’. 
Full data sets of all runs can be found in 
the supplementary file Supplementary_Ta- 
bles.xlsx. 

Discussion 

While the ‘Null Model’ was anticipated 
to yield more equitable results due to 
random interactions and the absence of 
competitive mechanisms, significant in- 
equalities emerged, with Gini coefficients 
often exceeding 0.5 across iterations. This 
finding aligns with the theory that even 
in networks without hierarchy, resource 

distributions may still become skewed 
due to random accumulation patterns 
(Bressloff 2021). Additionally, clustering ef- 
fects within the ‘Null Model’ highlight how 
structural features can exacerbate inequal- 
ities, even in randomized systems (Luthra 
and Todd). By contrast, the ‘Winner-Loser 
Model’ consistently produced high levels 
of inequality, reinforcing power-law distri- 
bution patterns and centralizing resources 
within a few agents, as predicted for com- 
petitive, hierarchical networks. Overall, 
the results reinforce the idea that hierarchi- 
cal systems increase inequality, mirroring 
processes outlined by (Hermanussen et al. 
2023), where wealthier agents amass re- 
sources through repeated successes. Such 
patterns are analogous to real-world sys- 
tems, where entrenched economic hierar- 
chies often resist mild redistributive efforts 
(Duff 2008). 
Taxation and redistribution effectively re- 
duced inequality in both models, yet their 
impact varied. In the ‘Null Model’, taxation 
stabilized Gini coefficients at lower levels 
across all network sizes (Figure 4A, B). This 
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result suggests that redistribution effec- 
tively mitigates resource disparities in sys- 
tems where interactions lack cumulative 
advantage. In the ‘Winner-Loser Model’, 
taxation and redistribution effectively re- 
duced inequality, but not to the same ex- 
tent as in the ‘Null Model’; Gini coefficients 
stabilized around 0.5, especially in larger 
networks (Figure 4D). The observed persis- 
tence of hierarchical dominance suggests 
that competitive advantages can resist mild 
redistributive measures. This underscores 
the need for stronger interventions, such 
as progressive taxation, which may align 
more closely with real-world scenarios 
(Maynard 2014). 

Influence of Network Size 

Network size significantly modulated the 
impact of taxation. Smaller networks in 
both models exhibited more pronounced 
inequality, likely due to limited interaction 
opportunities, which amplified resource 
accumulation among a few agents. Larger 

networks, in contrast, showed more stabi- 
lized inequalities under taxation, consis- 
tent with findings from studies on scale- 
free networks (Barabási and Albert 1999). 
This suggests that larger, interconnected 
systems facilitate redistributive mecha- 
nisms, reducing disparities and promot- 
ing equitable outcomes. However, the 
limitations of the ‘Winner-Loser Model’ 
highlight the need for stronger measures, 
such as progressive taxation, to reduce en- 
trenched dominance and enhance equity. 
These observations highlight the impor- 
tance of network connectivity in redis- 
tributive efforts, suggesting that policies 
targeting inequality in smaller or isolated 
communities may require tailored inter- 
ventions to counteract limited interaction 
opportunities. 

Impact on Network Dynamics and 

Stability 

The stabilization of Lambda, representing 
resource mobility, provides insight into the 
broader implications for social and health 

Table 2 Run 1, 10% taxation and redistribution – data about expressed triad structures at chosen iterations for the network sizes 10, 
50 and 200. ‘Neighbors’ refers to the number of agents from which the active agent selects competitors during each interaction, ‘dd’= 
double dominant, ‘ds’ = double subordinate, ‘pa’ = pass-along, ‘tr’ = transitive, ‘cy’ = cyclic triad interaction pattern 

‘Null Model’ ‘Winner-Loser Model’ 

Iteration Agents Neighbors Dd ds pa tr cy dd ds pa tr cy 

1 10 10 13 19 23 8 3 8 19 12 15 2 
10 10 10 10 9 15 2 4 14 26 11 54 1 
20 10 10 10 12 25 9 1 8 28 18 25 0 
30 10 10 6 9 26 11 1 19 23 16 43 0 
1 50 20 276 272 531 56 17 600 809 631 141 12 
10 50 20 276 243 515 30 14 798 1096 618 270 1 
20 50 20 222 226 482 45 17 849 859 595 211 5 
30 50 20 232 244 494 46 6 973 1043 699 274 3 
1 200 20 1008 951 2020 131 43 2243 2890 2280 513 13 
10 200 20 982 1046 1950 144 56 3735 4488 2829 905 17 
20 200 20 1090 1065 2088 125 43 4001 4559 2894 985 15 
30 200 20 999 928 2003 177 45 3835 4188 2894 991 34 
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systems. In the ‘Null Model’, Lambda’s 
stability across larger networks under tax- 
ation reflects enhanced system resilience, 
resembling Gamboa’s findings (Gamboa 
2023) on how equitable resource flows 
can sustain adaptive network interactions 
critical for public health. Stable exchange 
rates are critical for maintaining access to 
resources like healthcare, nutrition, and 
housing – key determinants of population 
health. 
Conversely, the ‘Winner-Loser Model’ 
without taxation showed a sharp drop in 
Lambda, indicating reduced resource mo- 
bility as tokens accumulated among fewer 
agents (Figure 5). Taxation moderated 
these effects, supporting more dynamic 
exchanges (Figure 6). This highlights the 
potential of redistributive policies to mit- 
igate systemic inequalities and foster re- 
silience, which are crucial for equitable 
public health outcomes. 

Triad Structure and Resource 

Dynamics 

Analyzing triadic structures shows how 
taxation can reshape interaction patterns 
and impacts resource distribution within 
each model. In the ‘Null Model’, pass-along 
triads dominated, indicating a tendency 
toward cooperative, linear resource shar- 
ing without reinforcing power imbalances 
(Figure 7A, C). Taxation further stabilized 
these patterns, suggesting that in systems 
where agents interact randomly, redistribu- 
tive efforts reinforce this cooperative flow, 
maintaining equitable exchanges and pre- 
venting significant resource concentration. 
In the ‘Winner-Loser Model’, double dom- 
inant triads were prevalent (Figure 8A, 
C) reflecting feedback loops that consoli- 
date power among a few agents, leading 
to unequal access to resources. This con- 
centration of power within certain triadic 
structures aligns with Merton’s (1968) con- 

cept of feedback loops reinforcing dom- 
inance and mirrors patterns observed in 
biological systems, where uneven access 
to essential resources (such as nutrition or 
social support) can lead to disparities in 
growth and other developmental outcomes 
(Hermanussen et al. 2023). Taxation re- 
duced the centralization of power within 
the double dominant triad structures and 
increased the prevalence of transitive and 
double subordinate structures (Figure 8B, 
D). This shift suggests that redistribution 
interrupts the reinforcement of dominance 
hierarchies, fostering more balanced and 
reciprocal exchanges. However, in larger 
networks, double dominant and double 
subordinate triads persisted, highlighting 
the resilience of hierarchical patterns even 
under redistributive mechanisms. This 
underscores the need for redistributive 
policies tailored to hierarchical systems, 
where more aggressive measures, such as 
progressive taxation, may better address 
entrenched inequalities. 

Limitations 

The study uses a fixed 10% tax rate, chosen 
for its computational manageability, which 
inherently simplifies the complexity of real- 
world tax systems. Progressive or variable 
taxation schemes could provide deeper in- 
sights into how redistributive policies influ- 
ence inequality in diverse contexts. Explor- 
ing these alternatives could help bridge the 
gap between simulated and real-world dy- 
namics and deepen our understanding of 
resource inequalities and its impact on pub- 
lic health. 

Conclusion 

We have demonstrated that taxation and re- 
distribution play crucial roles in mitigating 
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Figure 7 Radar plots of the ‘Null Model’ representing the frequency of which triad structures occur through the simulation. A) 10 agents 
without taxation, B) 10 agents with taxation, C) 200 agents without taxation, D) 200 agents with taxation. 

inequality within both the ‘Winner-Loser’ 
and ‘Null Model’, although their effec- 
tiveness varies. The ‘Null Model’, initially 
expected to maintain more balanced dis- 
tributions, revealed inherent inequalities, 
with taxation acting as a stabilizing force 
to foster more equitable resource sharing. 
In the ‘Winner-Loser Model’, where com- 
petition naturally drives hierarchy and re- 
source concentration, taxation moderated 
inequality but could not fully dismantle 
dominant structures, especially in larger 
networks. 
These findings emphasize the role of sys- 
temic interventions like taxation in ad- 
dressing resource disparities, which are 
vital for equitable access to essential re- 
sources, including healthcare and social 
support. However, the limitations observed 
in the ‘Winner-Loser Model’, suggest that 

moderate taxation alone may be insuffi- 
cient to fully counteract entrenched hi- 
erarchies. Future research could explore 
the impact of varying tax rates, progressive 
taxation, and additional redistributive mea- 
sures across diverse network structures to 
achieve greater equity in competitive sys- 
tems. 

Data Availability 

Statistics were conducted using R 4.3.0 (R 
Core Team 2023). 
The datasets simulated during the current 
study and used R scripts are freely available 
at https://github.com/userleutner/RDNets 
and are based on the package ‘hanna’ v0.2.1 
(Groth 2023). 

https://github.com/userleutner/RDNets
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Figure 8 Radar plots of ‘Winner-Loser Models’ representing the frequency of which triad structures occur through the simulation. A) 10 
agents without taxation, B) 10 agents with taxation, C) 200 agents without taxation, D) 200 agents with taxation. dd = double dominant, 
cy = cyclic, tr = transitive, pa = pass-along, ds = double subordinate 

Supplementary Materials 

All plots that have been generated dur- 
ing Run 1 can be found in “Supplemen- 
tary_Plots.pdf”. Additional data on triad 
structure frequencies, Gini coefficients, 
and Lambda values are provided in the 
supplementary file “Supplementary_Ta- 
bles.xlsx”. 
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