No correlation between HSPG2 genetic variants and anthropometric characteristics within an ACL rupture risk modelling study

Authors

  • Lethabo Ramoshaba Division of Physiological Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, University of Cape Town, Newlands, South Africa https://orcid.org/0000-0002-7343-6038
  • Mary-Jessica N Laguette Division of Physiological Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, University of Cape Town, Newlands, South Africa International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Newlands, South Africa https://orcid.org/0000-0001-9979-117X
  • Malcolm Collins Division of Physiological Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, University of Cape Town, Newlands, South Africa International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Newlands, South Africa
  • Alison V. September Division of Physiological Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, University of Cape Town, Newlands, South Africa International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Newlands, South Africa

DOI:

https://doi.org/10.52905/hbph2025.1.93

Abstract

Background Anterior cruciate ligament (ACL) ruptures are common musculoskeletal injuries, influenced by extrinsic and intrinsic factors such as genetic variations and anthropometric traits. While these factors contribute to ACL rupture susceptibility, their interactions are underexplored.

Objectives To investigate the relationship between HSPG2 variants and anthropometric traits in participants from an ACL study from Poland and Sweden.

Hypothesis Genetic variability within HSPG2 loci along with height variability may collectively contribute to ACL rupture susceptibility.

Sample and methods A genetic case-control association study was conducted with two cohorts from Poland and Sweden and a combined cohort. Participants were self-reported Caucasian and physically active. The combined cohort consisted of 265 asymptomatic controls (POL-CON=150; SWD-CON=116); 237 ACL rupture cases (POL-ACLR=141; SWD-ACLR=95) and a subgroup of 135 non-contact ACL ruptures (POL-NON=54; SWD-NON=79). Participants were genotyped for rs2291826 A>G and rs2291827 G>A and data were analysed using R, with p<0.05.

Results Strong correlations were found between mass and BMI across all cohorts (r=0.78–0.81), suggesting these traits may influence injury risk. Sex-mass and sex-height correlations were consistent, with a strong negative correlation between sex and height in the Swedish cohort (r=-0.75). No positive correlations were found between the HSPG2 variants and anthropometric traits, except a moderate negative correlation between rs2291826A>G and height in the Swedish cohort (r=-0.019, p<0.009), suggesting possible genotype effect on height.

Conclusion Mass and BMI were highlighted as potential risk factors for ACL rupture. Height-mass relationships varied by sex and population, suggesting both genetics and environment impact injury patterns. Further testing of the variants may clarify their role in ACL injury variability.

References

Adouni, M./Aydelik, H./Faisal, T. R./Hajji, R. (2024). The effect of body weight on the knee joint biomechanics based on subject-specific finite element-musculoskeletal approach. Scientific Reports 14 (1), 13777. https://​doi.​org/​10.​1038/​s41598-024-63745-x. DOI: https://doi.org/10.1038/s41598-024-63745-x

Alsayed, H. N./Alkhateeb, M. A./Aldossary, A. A./Houbani, K. M./Aljamaan, Y. M./Alrashidi, Y. A. (2023). Risk of anterior cruciate ligament injury in population with elevated body mass index. Medicinski Glasnik 20 (1). https://​doi.​org/​10.​17392/​1517-22. DOI: https://doi.org/10.17392/1517-22

Arikawa-Hirasawa, E. (2022). Impact of the heparan sulfate proteoglycan perlecan on human disease and health. American Journal of Physiology. Cell Physiology 322 (6), C1117-C1122. https://​doi.​org/​10.​1152/​ajpcell.​00113.​2022. DOI: https://doi.org/10.1152/ajpcell.00113.2022

Bednarczyk, M./Stege, H./Grabbe, S./Bros, M. (2020). β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. International Journal of Molecular Sciences 21 (4). https://​doi.​org/​10.​3390/​ijms21041402. DOI: https://doi.org/10.3390/ijms21041402

Bittencourt, N. F. N./Meeuwisse, W. H./Mendonça, L. D./Nettel-Aguirre, A./Ocarino, J. M./Fonseca, S. T. (2016). Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition-narrative review and new concept. British Journal of Sports Medicine 50 (21), 1309–1314. https://​doi.​org/​10.​1136/​bjsports-2015-095850. DOI: https://doi.org/10.1136/bjsports-2015-095850

Bruder, A. M./Culvenor, A. G./King, M. G./Haberfield, M./Roughead, E. A./Mastwyk, J./Kemp, J. L./Ferraz Pazzinatto, M./West, T. J./Coburn, S. L./Cowan, S. M./Ezzat, A. M./To, L./Chilman, K./Couch, J. L./Whittaker, J. L./Crossley, K. M. (2023). Let's talk about sex (and gender) after ACL injury: a systematic review and meta-analysis of self-reported activity and knee-related outcomes. British Journal of Sports Medicine 57 (10), 602–610. https://​doi.​org/​10.​1136/​bjsports-2022-106099. DOI: https://doi.org/10.1136/bjsports-2022-106099

Cięszczyk, P./Willard, K./Gronek, P./Zmijewski, P./Trybek, G./Gronek, J./Weber-Rajek, M./Stastny, P./Petr, M./Lulińska-Kuklik, E./Ficek, K./Kemeryte-Riaubiene, E./Maculewicz, E./September, A. V. (2017). Are genes encoding proteoglycans really associated with the risk of anterior cruciate ligament rupture? Biology of Sport 34 (2), 97–103. https://​doi.​org/​10.​5114/​biolsport.​2017.​64582. DOI: https://doi.org/10.5114/biolsport.2017.64582

Davis, A. M./Wong, R./Steinhart, K./Cruz, L./Cudmore, D./Dwyer, T./Li, L./Marks, P./McGlasson, R./Urquhart, N./Wilson, J. A./Nimmon, L./Ogilvie-Harris, D./Chahal, J. (2021). Development of an intervention to manage knee osteoarthritis risk and symptoms following anterior cruciate ligament injury. Osteoarthritis and Cartilage 29 (12), 1654–1665. https://​doi.​org/​10.​1016/​j.​joca.​2021.​08.​011. DOI: https://doi.org/10.1016/j.joca.2021.08.011

Dlamini, S. B./Saunders, C. J./Laguette, M.-J. N./Gibbon, A./Gamieldien, J./Collins, M./September, A. V. (2023). Application of an in silico approach identifies a genetic locus within ITGB2, and its interactions with HSPG2 and FGF9, to be associated with anterior cruciate ligament rupture risk. European Journal of Sport Science 23 (10), 2098–2108. https://​doi.​org/​10.​1080/​17461391.​2023.​2171906. DOI: https://doi.org/10.1080/17461391.2023.2171906

Farach-Carson, M. C./Carson, D. D. (2007). Perlecan--a multifunctional extracellular proteoglycan scaffold. Glycobiology 17 (9), 897–905. https://​doi.​org/​10.​1093/​glycob/​cwm043. DOI: https://doi.org/10.1093/glycob/cwm043

Feldmann, D. (2022). Whole genome sequencing approach to identifying genetic risk factors underlying anterior cruciate ligament injuries in a twin family study. Faculty of Health Sciences, Department of Human Biology, 2022. Available online at http:​/​/​hdl.​handle.​net/​11427/​36615.

Feldmann, D. C./Rahim, M./Suijkerbuijk, M. A. M./Laguette, M.-J. N./Cieszczyk, P./Ficek, K./Huminska-Lisowska, K./Häger, C. K./Stattin, E./Nilsson, K. G./Alvarez-Rumero, J./Eynon, N./Feller, J./Tirosh, O./Posthumus, M./Chimusa, E. R./Collins, M./September, A. V. (2022). Investigation of multiple populations highlight VEGFA polymorphisms to modulate anterior cruciate ligament injury. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 40 (7), 1604–1612. https://​doi.​org/​10.​1002/​jor.​25192. DOI: https://doi.org/10.1002/jor.25192

Gibbon, A./Saunders, C. J./Collins, M./Gamieldien, J./September, A. V. (2018). Defining the molecular signatures of Achilles tendinopathy and anterior cruciate ligament ruptures: A whole-exome sequencing approach. PloS One 13 (10), e0205860. https://​doi.​org/​10.​1371/​journal.​pone.​0205860. DOI: https://doi.org/10.1371/journal.pone.0205860

González, J. R./Armengol, L./Solé, X./Guinó, E./Mercader, J. M./Estivill, X./Moreno, V. (2007). SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23 (5), 644–645. https://​doi.​org/​10.​1093/​bioinformatics/​btm025. DOI: https://doi.org/10.1093/bioinformatics/btm025

Griffin, L. Y./Albohm, M. J./Arendt, E. A./Bahr, R./Beynnon, B. D./Demaio, M./Dick, R. W./Engebretsen, L./Garrett, W. E./Hannafin, J. A./Hewett, T. E./Huston, L. J./Ireland, M. L./Johnson, R. J./Lephart, S./Mandelbaum, B. R./Mann, B. J./Marks, P. H./Marshall, S. W./Myklebust, G./Noyes, F. R./Powers, C./Shields, C./Shultz, S. J./Silvers, H./Slauterbeck, J./Taylor, D. C./Teitz, C. C./Wojtys, E. M./Yu, B. (2006). Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. The American Journal of Sports Medicine 34 (9), 1512–1532. https://​doi.​org/​10.​1177/​0363546506286866. DOI: https://doi.org/10.1177/0363546506286866

Gubbiotti, M. A./Neill, T./Iozzo, R. V. (2017). A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biology: Journal of the International Society for Matrix Biology 57-58, 285–298. https://​doi.​org/​10.​1016/​j.​matbio.​2016.​09.​003. DOI: https://doi.org/10.1016/j.matbio.2016.09.003

Hayes, A. J./Farrugia, B. L./Biose, I. J./Bix, G. J./Melrose, J. (2022). Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Frontiers in Cell and Developmental Biology 10, 856261. https://​doi.​org/​10.​3389/​fcell.​2022.​856261. DOI: https://doi.org/10.3389/fcell.2022.856261

Hermanussen, M./Aßmann, C./Groth, D. (2021). Chain Reversion for Detecting Associations in Interacting Variables-St. Nicolas House Analysis. International Journal of Environmental Research and Public Health 18 (4). https://​doi.​org/​10.​3390/​ijerph18041741. DOI: https://doi.org/10.3390/ijerph18041741

Hewett, T. E./Myer, G. D./Ford, K. R./Paterno, M. V./Quatman, C. E. (2016). Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 34 (11), 1843–1855. https://​doi.​org/​10.​1002/​jor.​23414. DOI: https://doi.org/10.1002/jor.23414

Huang, J./Li, X./Shi, X./Zhu, M./Wang, J./Huang, S./Huang, X./Wang, H./Li, L./Deng, H./Zhou, Y./Mao, J./Long, Z./Ma, Z./Ye, W./Pan, J./Xi, X./Jin, J. (2019). Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. Journal of Hematology & Oncology 12 (1), 26. https://​doi.​org/​10.​1186/​s13045-019-0709-6. DOI: https://doi.org/10.1186/s13045-019-0709-6

Hurd, W. J./Axe, M. J./Snyder-Mackler, L. (2008). Influence of age, gender, and injury mechanism on the development of dynamic knee stability after acute ACL rupture. The Journal of Orthopaedic and Sports physical Therapy 38 (2), 36–41. https://​doi.​org/​10.​2519/​jospt.​2008.​2609. DOI: https://doi.org/10.2519/jospt.2008.2609

Iozzo, R. V. (2005). Basement membrane proteoglycans: from cellar to ceiling. Nature Reviews. Molecular Cell Biology 6 (8), 646–656. https://​doi.​org/​10.​1038/​nrm1702. DOI: https://doi.org/10.1038/nrm1702

Joseph, A. M./Collins, C. L./Henke, N. M./Yard, E. E./Fields, S. K./Comstock, R. D. (2013). A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. Journal of Athletic Training 48 (6), 810–817. https://​doi.​org/​10.​4085/​1062-6050-48.​6.​03. DOI: https://doi.org/10.4085/1062-6050-48.6.03

Kiapour, A. M./Murray, M. M. (2014). Basic science of anterior cruciate ligament injury and repair. Bone & Joint Research 3 (2), 20–31. https://​doi.​org/​10.​1302/​2046-3758.​32.​2000241. DOI: https://doi.org/10.1302/2046-3758.32.2000241

Kızılgöz, V./Sivrioğlu, A. K./Aydın, H./Ulusoy, G. R./Çetin, T./Tuncer, K. (2019). The Combined Effect of Body Mass Index and Tibial Slope Angles on Anterior Cruciate Ligament Injury Risk in Male Knees: A Case-Control Study. Clinical Medicine Insights. Arthritis and Musculoskeletal Disorders 12, 1179544119867922. https://​doi.​org/​10.​1177/​1179544119867922. DOI: https://doi.org/10.1177/1179544119867922

Kobayashi, H./Kanamura, T./Koshida, S./Miyashita, K./Okado, T./Shimizu, T./Yokoe, K. (2010). Mechanisms of the anterior cruciate ligament injury in sports activities: a twenty-year clinical research of 1,700 athletes. Journal of Sports science & Medicine 9 (4), 669–675.

Lahiri, D. K./Nurnberger, J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research 19 (19), 5444. https://​doi.​org/​10.​1093/​nar/​19.​19.​5444. DOI: https://doi.org/10.1093/nar/19.19.5444

Logerstedt, D. S./Scalzitti, D. A./Bennell, K. L./Hinman, R. S./Silvers-Granelli, H./Ebert, J./Hambly, K./Carey, J. L./Snyder-Mackler, L./Axe, M. J./McDonough, C. M. (2018). Knee Pain and Mobility Impairments: Meniscal and Articular Cartilage Lesions Revision 2018. The Journal of Orthopaedic and Sports physical Therapy 48 (2), A1-A50. https://​doi.​org/​10.​2519/​jospt.​2018.​0301. DOI: https://doi.org/10.2519/jospt.2018.0301

Lohmander, L. S./Englund, P. M./Dahl, L. L./Roos, E. M. (2007). The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. The American Journal of Sports Medicine 35 (10), 1756–1769. https://​doi.​org/​10.​1177/​0363546507307396. DOI: https://doi.org/10.1177/0363546507307396

Lulińska-Kuklik, E./Leźnicka, K./Humińska-Lisowska, K./Moska, W./Michałowska-Sawczyn, M./Ossowski, Z./Maculewicz, E./Cięszczyk, P./Kaczmarczyk, M./Ratkowski, W./Ficek, K./Zmijewski, P./Leońska-Duniec, A. (2019). The VEGFA gene and anterior cruciate ligament rupture risk in the Caucasian population. Biology of Sport 36 (1), 3–8. https://​doi.​org/​10.​5114/​biolsport.​2018.​78902. DOI: https://doi.org/10.5114/biolsport.2018.78902

Magnusson, K./Turkiewicz, A./Hughes, V./Frobell, R./Englund, M. (2020). High genetic contribution to anterior cruciate ligament rupture: Heritability ~69. British Journal of Sports Medicine. https://​doi.​org/​10.​1136/​bjsports-2020-102392. DOI: https://doi.org/10.1136/bjsports-2020-102392

Martinez, J. R./Dhawan, A./Farach-Carson, M. C. (2018). Modular Proteoglycan Perlecan/HSPG2: Mutations, Phenotypes, and Functions. Genes 9 (11). https://​doi.​org/​10.​3390/​genes9110556. DOI: https://doi.org/10.3390/genes9110556

Meeuwisse, W. (1994). Assessing Causation in Sport Injury: A Multifactorial Model. Clinical Journal of Sport Medicine 4 (3), 166–170. DOI: https://doi.org/10.1097/00042752-199407000-00004

Mokone, G. G./Schwellnus, M. P./Noakes, T. D./Collins, M. (2006). The COL5A1 gene and Achilles tendon pathology. Scandinavian Journal of Medicine & Science in Sports 16 (1), 19–26. https://​doi.​org/​10.​1111/​j.​1600-0838.​2005.​00439.​x. DOI: https://doi.org/10.1111/j.1600-0838.2005.00439.x

Motififard, M./Akbari Aghdam, H./Ravanbod, H./Jafarpishe, M. S./Shahsavan, M./Daemi, A./Mehrvar, A./Rezvani, A./Jamalirad, H./Jajroudi, M./Shahsavan, M. (2024). Demographic and Injury Characteristics as Potential Risk Factors for Anterior Cruciate Ligament Injuries: A Multicentric Cross-Sectional Study. Journal of Clinical Medicine 13 (17). https://​doi.​org/​10.​3390/​jcm13175063. DOI: https://doi.org/10.3390/jcm13175063

Murphy, D. F./Connolly, D. A. J./Beynnon, B. D. (2003). Risk factors for lower extremity injury: a review of the literature. British Journal of Sports Medicine 37 (1), 13–29. https://​doi.​org/​10.​1136/​bjsm.​37.​1.​13. DOI: https://doi.org/10.1136/bjsm.37.1.13

Murray, M. M./Martin, S. D./Martin, T. L./Spector, M. (2000). Histological changes in the human anterior cruciate ligament after rupture. The Journal of Bone and Joint Surgery. American Volume 82 (10), 1387–1397. https://​doi.​org/​10.​2106/​00004623-200010000-00004. DOI: https://doi.org/10.2106/00004623-200010000-00004

Posthumus, M./September, A. V./O'Cuinneagain, D./van der Merwe, W./Schwellnus, M. P./Collins, M. (2010). The association between the COL12A1 gene and anterior cruciate ligament ruptures. British Journal of Sports Medicine 44 (16), 1160–1165. https://​doi.​org/​10.​1136/​bjsm.​2009.​060756. DOI: https://doi.org/10.1136/bjsm.2009.060756

Rahim, M./Mannion, S./Klug, B./Hobbs, H./van der Merwe, W./Posthumus, M./Collins, M./September, A. V. (2017). Modulators of the extracellular matrix and risk of anterior cruciate ligament ruptures. Journal of Science and Medicine in Sport 20 (2), 152–158. https://​doi.​org/​10.​1016/​j.​jsams.​2016.​07.​003. DOI: https://doi.org/10.1016/j.jsams.2016.07.003

Ribbans, W. J./September, A. V./Collins, M. (2022). Tendon and Ligament Genetics: How Do They Contribute to Disease and Injury? A Narrative Review. Life 12 (5). https://​doi.​org/​10.​3390/​life12050663. DOI: https://doi.org/10.3390/life12050663

Schaid, D. J./Sinnwell, J. P./Jenkins, G. D./McDonnell, S. K./Ingle, J. N./Kubo, M./Goss, P. E./Costantino, J. P./Wickerham, D. L./Weinshilboum, R. M. (2012). Using the gene ontology to scan multilevel gene sets for associations in genome wide association studies. Genetic Epidemiology 36 (1), 3–16. https://​doi.​org/​10.​1002/​gepi.​20632. DOI: https://doi.org/10.1002/gepi.20632

Seneviratne, A./Attia, E./Williams, R. J./Rodeo, S. A./Hannafin, J. A. (2004). The effect of estrogen on ovine anterior cruciate ligament fibroblasts: cell proliferation and collagen synthesis. The American Journal of Sports Medicine 32 (7), 1613–1618. https://​doi.​org/​10.​1177/​0363546503262179. DOI: https://doi.org/10.1177/0363546503262179

Shapiro, S. S./Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52 (3/4), 591. https://​doi.​org/​10.​2307/​2333709. DOI: https://doi.org/10.2307/2333709

Snaebjörnsson, T./Svantesson, E./Sundemo, D./Westin, O./Sansone, M./Engebretsen, L./Hamrin-Senorski, E. (2019). Young age and high BMI are predictors of early revision surgery after primary anterior cruciate ligament reconstruction: a cohort study from the Swedish and Norwegian knee ligament registries based on 30,747 patients. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA 27 (11), 3583–3591. https://​doi.​org/​10.​1007/​s00167-019-05487-2. DOI: https://doi.org/10.1007/s00167-019-05487-2

Suijkerbuijk, M. A. M./Ponzetti, M./Rahim, M./Posthumus, M./Häger, C. K./Stattin, E./Nilsson, K. G./Teti, A./Meuffels, D. E./van der Eerden, B. J. C./Collins, M./September, A. V. (2019). Functional polymorphisms within the inflammatory pathway regulate expression of extracellular matrix components in a genetic risk dependent model for anterior cruciate ligament injuries. Journal of Science and Medicine in Sport 22 (11), 1219–1225. https://​doi.​org/​10.​1016/​j.​jsams.​2019.​07.​012. DOI: https://doi.org/10.1016/j.jsams.2019.07.012

Suter, L. G./Smith, S. R./Katz, J. N./Englund, M./Hunter, D. J./Frobell, R./Losina, E. (2017). Projecting Lifetime Risk of Symptomatic Knee Osteoarthritis and Total Knee Replacement in Individuals Sustaining a Complete Anterior Cruciate Ligament Tear in Early Adulthood. Arthritis care & Research 69 (2), 201–208. https://​doi.​org/​10.​1002/​acr.​22940. DOI: https://doi.org/10.1002/acr.22940

Widmyer, M. R./Utturkar, G. M./Leddy, H. A./Coleman, J. L./Spritzer, C. E./Moorman, C. T./DeFrate, L. E./Guilak, F. (2013). High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis and Rheumatism 65 (10), 2615–2622. https://​doi.​org/​10.​1002/​art.​38062. DOI: https://doi.org/10.1002/art.38062

Willard, K./Mannion, S./Saunders, C. J./Collins, M./September, A. V. (2018). The interaction of polymorphisms in extracellular matrix genes and underlying miRNA motifs that modulate susceptibility to anterior cruciate ligament rupture. Journal of Science and Medicine in Sport 21 (1), 22–28. https://​doi.​org/​10.​1016/​j.​jsams.​2017.​08.​017. DOI: https://doi.org/10.1016/j.jsams.2017.08.017

Downloads

Published

2025-07-13

How to Cite

Ramoshaba, L., Laguette, M.-J. N., Collins, M., & September, A. V. (2025). No correlation between HSPG2 genetic variants and anthropometric characteristics within an ACL rupture risk modelling study. Human Biology and Public Health, 1. https://doi.org/10.52905/hbph2025.1.93

Issue

Section

International Student Summer School