The Impact of a 10% Tax Rate and Redistribution on Resource Concentration in Networks

Authors

  • Sarah Leutner University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm https://orcid.org/0009-0002-3076-2690
  • Illia Terpylo University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany
  • Detlef Groth University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany https://orcid.org/0000-0002-9441-3978

DOI:

https://doi.org/10.52905/hbph2025.1.94

Keywords:

Redistribution, Social Networks, Taxation, Triad Motif, Winner-Loser Model

Abstract

Background Resource disparities are common in social networks, often driven by competitive interactions. Exploring how interventions like taxation influence these inequalities can reveal mechanisms for more balanced distributions.

Objectives This study investigates the effects of a 10% tax rate and redistribution on inequality and resource stability within two network models: the ‘Winner-Loser Model’ which intensifies hierarchies through competitive interactions, and the ‘Null Model’, simulating equal opportunity exchanges.

Sample and Methods We used Monte Carlo simulations with agents starting at equal resource levels, interacting under the rules of each model. Taxation effects were measured through Gini coefficients and Lambda stability scores across various network sizes.

Results Taxation reduced Gini coefficients in both models, promoting more balanced distributions. Lambda values indicated that taxation improved stability, especially within the ‘Winner-Loser Model’, by diminishing extreme resource accumulation.

Conclusions The study demonstrates that while competitive dynamics naturally drive inequality, taxation and redistribution mechanisms can stabilize and reduce disparities. These findings suggest that even simple redistribution can reduce hierarchical resource concentration and counteract extreme inequalities in networked settings.

References

Arul, S. M./Senthil, G./Jayasudha, S./Alkhayyat, A./Azam, K./Elangovan, R./Vijayan, V./Senthil Kumar, T. S. (2023). Graph Theory and Algorithms for Network Analysis. E3S Web of Conferences 399, 8002. https://​doi.​org/​10.​1051/​e3sconf/​202339908002. DOI: https://doi.org/10.1051/e3sconf/202339908002

Barabási, A. L./Albert, R. (1999). Emergence of scaling in random networks. Science 286 (5439), 509–512. https://​doi.​org/​10.​1126/​science.​286.​5439.​509. DOI: https://doi.org/10.1126/science.286.5439.509

Bressloff, P. C. (2021). First-passage processes and the target-based accumulation of resources. Physical Review E 103 (1), 12101. https://​doi.​org/​10.​1103/​PhysRevE.​103.​012101. DOI: https://doi.org/10.1103/PhysRevE.103.012101

Chiang, Y.-S. (2015). Good Samaritans in Networks: An Experiment on How Networks Influence Egalitarian Sharing and the Evolution of Inequality. PloS ONE 10 (6), e0128777. https://​doi.​org/​10.​1371/​journal.​pone.​0128777. DOI: https://doi.org/10.1371/journal.pone.0128777

Davis, N./Jarvis, A./Aitkenhead, M. J./Polhill, J. G./Muneepeerakul, R. (2020). Trajectories toward maximum power and inequality in resource distribution networks. PloS ONE 15 (3), e0229956. https://​doi.​org/​10.​1371/​journal.​pone.​0229956. DOI: https://doi.org/10.1371/journal.pone.0229956

Duff, D. (2008). Tax Fairness and the Tax Mix. All Faculty Publications. Available online at https://​commons.​allard.​ubc.​ca/​fac_​pubs/​104.

Gamboa, A. J. P. (2023). Contribution of graph theory to the understanding of social dynamics. AWARI 4. https://​doi.​org/​10.​47909/​awari.​51. DOI: https://doi.org/10.47909/awari.51

Gini, C. (1912). Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini.

Groth, Detlef (2023). hanna: Winner-looser effects for social network efficiency simulated using Monte Carlo simulations 2023. Available online at https://​github.​com/​mittelmark/​hanna.

Hermanussen, M./Dammhahn, M./Scheffler, C./Groth, D. (2023). Winner-loser effects improve social network efficiency between competitors with equal resource holding power. Scientific Reports 13 (1), 14439. https://​doi.​org/​10.​1038/​s41598-023-41225-y. DOI: https://doi.org/10.1038/s41598-023-41225-y

Jackson, M. O./Rogers, B. W. (2007). Meeting Strangers and Friends of Friends: How Random Are Social Networks? American Economic Review 97 (3), 890–915. https://​doi.​org/​10.​1257/​aer.​97.​3.​890. DOI: https://doi.org/10.1257/aer.97.3.890

Lee, H. G./Lee, D.-S. (2023). Scaling in local to global condensation of wealth on sparse networks. Physical Review E 108 (6), 64303. https://​doi.​org/​10.​1103/​PhysRevE.​108.​064303. DOI: https://doi.org/10.1103/PhysRevE.108.064303

Lewis, K. (2015). How Networks Form: Homophily, Opportunity, and Balance. In: Emerging Trends in the Social and Behavioral Sciences. John Wiley & Sons, Ltd, 1–14. DOI: https://doi.org/10.1002/9781118900772.etrds0164

Lorenz, M. O. (1905). Methods of Measuring the Concentration of Wealth. Publications of the American Statistical Association. (accessed 9/4/2024). DOI: https://doi.org/10.1080/15225437.1905.10503443

Luthra, M./Todd, P. M. Social Search Evolves with the Emergence of Clustered Environments. In: ALIFE 2021. DOI: https://doi.org/10.1162/isal_a_00460

Maynard, G. P. (2014). Addressing Wealth Disparities: Reimagining Wealth Taxation as a Tool for Building Wealth. ERN: Wealth (Topic). Available online at https://​www.​semanticscholar.​org/​paper/​Addressing-Wealth-Disparities%3A-Reimagining-Wealth-a-Maynard/​edb8f14f9ff8b23b1c0c6aac62ad13fefb9eb43c (accessed 10/31/2024).

Merton, R. K. (1968). The Matthew Effect in Science. The reward and communication systems of science are considered. Science 159 (3810), 56–63. https://​doi.​org/​10.​1126/​science.​159.​3810.​56. DOI: https://doi.org/10.1126/science.159.3810.56

Mesterton-Gibbons, M./Dai, Y./Goubault, M. (2016). Modeling the evolution of winner and loser effects: A survey and prospectus. Mathematical Biosciences 274, 33–44. https://​doi.​org/​10.​1016/​j.​mbs.​2016.​02.​002. DOI: https://doi.org/10.1016/j.mbs.2016.02.002

Mitchell, M. (2006). Complex systems: Network thinking. Artificial Intelligence 170 (18), 1194–1212. https://​doi.​org/​10.​1016/​j.​artint.​2006.​10.​002. DOI: https://doi.org/10.1016/j.artint.2006.10.002

Mohs, J. N. (2019). Evaluating Flat Tax Theory: A Conceptual Framework. Journal of Business and Economic Policy 6 (4). https://​doi.​org/​10.​30845/​jbep.​v6n4a2. DOI: https://doi.org/10.30845/jbep.v6n4a2

Pinter-Wollman, N./Hobson, E. A./Smith, J. E./Edelman, A. J./Shizuka, D./Silva, S. de/Waters, J. S./Prager, S. D./Sasaki, T./Wittemyer, G./Fewell, J./McDonald, D. B. (2014). The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behavioral Ecology 25 (2), 242–255. https://​doi.​org/​10.​1093/​beheco/​art047. DOI: https://doi.org/10.1093/beheco/art047

R Core Team (2023). R: The R Project for Statistical Computing 2023. Available online at https://​www.​r-project.​org/​ (accessed 12/13/2024).

Shizuka, D./McDonald, D. B. (2015). The network motif architecture of dominance hierarchies. Journal of The Royal Society Interface 12 (105), 20150080. https://​doi.​org/​10.​1098/​rsif.​2015.​0080. DOI: https://doi.org/10.1098/rsif.2015.0080

Tsvetkova, M./Wagner, C./Mao, A./Gargiulo, F. (2018). The emergence of inequality in social groups: Network structure and institutions affect the distribution of earnings in cooperation games. PloS ONE 13 (7), e0200965. https://​doi.​org/​10.​1371/​journal.​pone.​0200965. DOI: https://doi.org/10.1371/journal.pone.0200965

Wood, B./Baker, P./Scrinis, G./McCoy, D./Williams, O./Sacks, G. (2021). Maximising the wealth of few at the expense of the health of many: a public health analysis of market power and corporate wealth and income distribution in the global soft drink market. Globalization and Health 17 (1), 138. https://​doi.​org/​10.​1186/​s12992-021-00781-6. DOI: https://doi.org/10.1186/s12992-021-00781-6

World Health Organization (2003). Social Determinants of Health: The Solid Facts. World Health Organization.

Published

2025-07-13

How to Cite

Leutner, S., Terpylo, I., & Groth, D. (2025). The Impact of a 10% Tax Rate and Redistribution on Resource Concentration in Networks. Human Biology and Public Health, 1. https://doi.org/10.52905/hbph2025.1.94

Issue

Section

International Student Summer School