
ISSN 2748-9957 | Vol. 1 2023 | pp. 1–16

In Python available: St. Nicolas House Algorithm (SNHA) with

bootstrap support for improved performance in dense networks

Tim Hake1 • Bernhard Bodenberger1 • Detlef Groth 1

1 University of Potsdam, Institute of Biochemistry and Biology, Bioinformatics Group, 14469 Potsdam, Germany

Citation:

Hake, T./Bodenberger, B./Groth , D. (2023). In
Python available: St. Nicolas House Algorithm
(SNHA) with bootstrap support for improved
performance in dense networks, Human Biology and
Public Health 1.
https://doi.org/10.52905/hbph2023.1.63.

Received: 2022-12-01
Accepted: 2022-12-14
Published: 2023-07-21

Copyright:

This is an open access article distributed under the
terms of the Creative Commons Attribution License
which permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Conflict of interest:

There are not conflicts of interest.

Correspondence to:

Tim Hake
email: thake@uni-potsdam.de

Keywords:

Python, correlation, network reconstruction,
bootstrap, St. Nicolas house algorithm

Abstract

The St. Nicolas House algorithm (SNHA) finds association chains
of direct dependent variables in a data set. The dependency is based
on the correlation coefficient, which is visualized as an undirected
graph. The network prediction is improved by a bootstrap routine. It
enables the computation of the empirical p-value, which is used to
evaluate the significance of the predicted edges. Synthetic data gen-
erated with the Monte Carlo method were used to firstly compare
the Python package with the original R package, and secondly to
evaluate the predicted network using the sensitivity, specificity, bal-
anced classification rate and the Matthew’s correlation coefficient
(MCC). The Python implementation yields the same results as the
R package. Hence, the algorithm was correctly ported into Python.
The SNHA scores high specificity values for all tested graphs. For
graphs with high edge densities, the other evaluation metrics de-
crease due to lower sensitivity, which could be partially improved
by using bootstrap,while for graphs with low edge densities the algo-
rithm achieves high evaluation scores. The empirical p-values indi-
cated that the predicted edges indeed are significant.

Take home message for students The St. Nicolas house algorithm to analyse interacting, correlated
variables is now available in R and in Python. The added bootstrap routine also improves the sensitivity
of detecting associations between variables without a loss in specificity.

http://orcid.org/0000-0002-9441-3978
https://doi.org/10.52905/hbph2023.1.63
https://creativecommons.org/licenses/by/4.0
mailto:thake@unipotsdam.de

2 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

Introduction

A major task in a variety of scientific fields
is to identify direct interactions between
variables, as this grants insights into their
underlying relationship and possibly ex-
poses unwanted effects, for instance in the
area of medicine. These interactions can be
used to obtain a network representation of
the data where edges represent the interac-
tion with nodes, which corresponds to the
data variables. Methods such as Lasso- or
Ridge-regression heavily rely on the input
parameter selection to provide adequate
results. Others, like Principal component,
factor or cluster analysis are often used
to visualize dependencies between the
variables in a data set, but they struggle
to classify dependent and independent
variables. Another recently introduced
method is the St. Nicolas house algorithm
(SNHA) (Groth et al. 2019; Hermanussen
et al. 2021). It is currently available in the R
package asg. To attract a wider community,
the core functionality of the asg package
was reimplemented in Python (vanRossum
and Drake 2009). Python was the choice,
because it is currently one of the most pop-
ular programming languages (University
of California 2022; Carbonnelle 2022).
However, methods such as simple correla-
tion or mutual information using simple
thresholds fall short of detecting only true
direct interactions, as they do not account
for indirect or transitive associations be-
tween interacting variables. Consider, for
example, a gene A directly controls a sec-
ond gene B, which in turn directly controls
a third gene C. Simple correlation would
falsely predict a connection between gene
A and gene C. Thus, in networks inferred
from biological data, with methods such
as simple correlation, mutual information,
or distance correlation, many erroneous
edges would be expected (Marbach et al.
2010;Marbach et al. 2012; Dunn et al. 2008;

Burger and Nimwegen 2010; Lapedes et al.
1997). To address this, several methods
like partial correlation (La Fuente et al.
2005; Hemelrijk 1990; Veiga et al. 2007)
and probabilistic approaches such as max-
imum entropy model (Lapedes et al. 1997;
Marks et al. 2011; Hopf et al. 2012) as well
as network deconvolution (Feizi et al. 2013)
are used to strengthen direct associations,
while removing indirect or transitive ones.
These approaches have in common that
the result is sensitive to the selection of
input parameters.
The SNHA(Groth et al. 2019;Hermanussen
et al. 2021) is a parameter free approach,
which finds direct interactions between
variables. The SNHA ranks the absolute
correlation coefficients in descending order
and thereby creates hierarchic, so called,as-
sociation chains. Association chains are
characterized by sequences for which a re-
versing start and end point does not change
the order of the elements (compare Figure
1). These sequences are used to visualize
the dependencies of the underlying vari-
ables as a graph by connecting them via
undirected edges.
Bootstrapping is a method that uses sam-
pling with replacement to provide statis-
tical inferences such as error and bias
estimates, confidence intervals, and hy-
pothesis tests without assumptions such
as normal distributions or equal variances
(Hesterberg 2011). Colby et al. (Colby et al.
2018) have shown that bootstrap aggrega-
tion in inferred networks improves stability
and, depending on the size of the input data
set, it might increases the accuracy. Fur-
ther, applying bootstrapping to biological
networks like gene regulatory networks,
can identify high-confidence edges and
well-connected hub nodes that potentially
play important roles in understanding the
underlying biological processes of these
networks(Li et al. 2011). The aim of this
work is to obtain empirical p-values for
predicted edges using the bootstrapping

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 3

Figure 1 An exemplary association chain with four nodes. It is characterized by the order of pairwise correlation coefficients between

the node D and all other nodes, which matches the order of the pairwise correlation coefficients between the A and all other nodes. This

ordering builds an association chain and undirected edges connects its members.

approach, which also stabilizes the pre-
diction quality of the algorithm. Further,
testing the algorithm on different graph
types will reveal possible limits of the algo-
rithm. And finally, the performance of the
SNHA will be compared to the R package
asg, to ensure a correct Python port.

Materials and Methods

Software

Major functionalities of the R packages
asg (Groth et al. 2019; Hermanussen et al.
2021) and mcgraph (Novine et al. 2022)
for the open source software R (R Core
Team 2022) were reimplemented using
the programming language Python 3 (van
Rossum and Drake 2009) (version 3.8.10).

Here, the core packages used are pandas
(1.3.4), numpy (1.21.3), igraph (0.9.11) and
matplotlib (3.4.3). The current R version is
available at Groth (2023), while the Python
version is available at Hake (2023).

Data

The data used for the analysiswas synthetic
data for which the underlying graph struc-
ture was known. The data was created by
the Python implementation of the function
mcgraph.graph2data (Novine et al. 2022).
It creates data of varying size and density,
independent from the graph type using
the Monte Carlo method (Metropolis and
Ulam 1949), which serves as an input for
the SNHA.

4 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

a) Werner-Graph b) Band-Graph c) Circle-Graph

d) Random-Graph
(N=10, E=13)

e) Random-Graph
(N=15, E=26)

f) Barabási-M2-Graph
(N=15, E=26)

Figure 2 The different graph types used for the analysis.

Graph types

In the analysis different types of graphs
with a diversity in their topology and den-
sity were used to get a better understanding
in which settings the algorithm performs
well and in which not. Examined graph
types were Werner-, Hub-, Band-, Circle-,
and Random-Graphs (Figure 2).

a) Werner-Graph: An artificial graph
containing the following features: the
nodes A and B converges in node C,
hence both nodes affect node C. C
is also connected to node D, which
diverges to node E and F. The connec-
tion between nodes E and F creates a
cycle of the nodes D, E and F.

b) Band-Graphs: These are connected
graphs that are characterized by each
node of the graph having a degree of
two and two nodes having a degree of
one.

c) Circle-Graphs: Similar to the Band-
Graph, but the last node is also con-
nected to the first node.

d) Random-Graphs: Randomly assign
undirected edges between the nodes.
Afterwards, randomly select starting
nodes. Draw an edge from each start-
ing point to its neighbours. Start from
each neighbour until all nodes are vis-
ited once. These random graphs were
compared to the scale-free Barabási
graphs e), f) (Barabási and Albert
1999).

St. Nicolas house algorithm (SNHA)

The SNHA(Groth et al. 2019;Hermanussen
et al. 2021) takes a correlation matrix as its
input. In the first step it then loops over the
columns of the correlation matrix where
each column corresponds to a node in the
graph. For each column, the correlations
are first ordered according to their abso-
lute values. Then, it looks for association

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 5

Algorithm 1 Saint Nicolas House Algorithm

input data;
procedure Saint_Nicolas_House Analysis (input data);
matrix = correlation(input_data);
for each column of matrix do

correlation_matrix = matrix
while length(column) > 3 do

find longest chain where ordering of correlation
matches forward and backward;
if no chain was found then

search Middle-Chain;
end
remove row and column of correlation matrix with smallest
correlation coefficient to the column (node) examined at the moment;

end
end

chains by checking if the ordered corre-
lations match forward and backward. If
that is the case, a so-called direct chain is
found. In case a direct chain was not found
in the above step, the algorithm looks for
middle chains. In this case, the examined
node is placed in all possible positions in
the middle of the chain, and it is checked
if the resulting sequence of nodes has an
ordering of correlation coefficients that
matches from forward/backward. After the
algorithm has searched for middle chains,
the row and the column with the lowest
correlated value to the node that is exam-
ined at the moment is removed from the
correlation matrix and the algorithm con-
tinues to search for a direct chain. This
procedure is followed until either a chain
was found or only 3 nodes remain for the
examined chain. After that, the next node
is examined. Found chains are then used to
establish an undirected graph by establish-
ing undirected edges between the nodes
along detected chains.
Saint Nicolas House Algorithm

Quality measure for prediction

The metrics used to evaluate the predic-
tion of the edges based on the correlations

is the Balanced Classification Rate (BCR)
(Brodersen et al. 2010) and the Matthews
correlation coefficient (MCC) (Matthews
1975). These measures result from the
counts of true positive (TP), false positive
(FP), true negative (TN) and false negative
(FN), which are gathered in a confusion
matrix. The BCR is defined as:

𝐵𝐶𝑅 =
Sensitivity + Specificity

2

with

Sensitivity = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 ;

Specificity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃.

It is used to evaluate binary classification
problems. Here, we predict whether two
nodes are connected by an edge or not. It is
particular useful for imbalanced data, e.g.
sparse or dense adjacencymatrix, which re-
sults in a graph with few edges or a highly
connected graph, respectively. The BCR is
defined in an interval of [0, 1]. An algo-
rithm that guesses randomly should have a
BCR value of around 0.5 or slightly higher.
For example, predicting all possible edges

6 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

as existingwould have a sensitivity of 1, but
a low specificity if the number of real edges
is low in comparison to the total number
of possible edges. The MCC is defined as:

𝑀𝐶𝐶 = 𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁
√(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)

The MCC is defined in the interval of [−1,
1], so randomguesses lead to values around
zero,while solely false predictions produce
values down to -1 and solely true predic-
tions cause values of 1.

Empirical p-values by bootstrapping

The empirical p-values (Davison and Hink-
ley 1997) were calculated with the boot-
strapping approach that was applied to the
synthetic data produced for the graph types
described above. Therefore, a randomized
dataset is created by taking k samples (with
replacement) from the synthetic data and
shuffle it column wise. Afterwards, the
edges are predicted by the SNHA. This
procedure is repeated m-times and the
number of predictions per edge is counted.
Repeating this procedure n-times leads to
a distribution for each edge, which is used
to compute the p-value. Also, the SNHA
predicts the edges on the synthetic data
m times and sums the number of predic-
tions per edge. The p-value is calculated by
North (North et al. 2003):

𝑝 = 𝑟 + 1
𝑛 + 1 (1) .

r is the number of predictions of the ran-
domized data, which is equal or greater
than the number of predictions of the
synthetic data. While n is the number of
repetitions described above. On the other
hand, the upper boundary of the confi-
dence interval of the distribution yields a
significance threshold for the number of
predictions.

Results

After the implementation of the SNHA
in Python it was compared to the origi-
nal R package. Therefore, the graphs from
above where used to generate synthetic
data (Novine et al. 2022). This data was
passed into the R and Python packages to
predict the networks. Both implementa-
tions of the algorithm yield the same graph
predictions. However, the bootstrapping
routine leads to slight differences as they
depend on the resampling of the data.
The computation of the empirical p-values
(Davison and Hinkley 1997) via bootstrap-
ping demands predictions on randomized
data. As a test case, the Werner graph (Fig.
2a) with 1000 iterations and 100 sampling
trials per iteration was used to count the
random predictions for each edge (Fig. 3).
Further, the prediction on the synthetic
data without randomization is needed to
compute the empirical p-value (Eq. 1).
Figure 4 shows the prediction on the syn-
thetic data. The blue bars represent the
cumulative count of the true predictions,
while the orange bars account for the false
predictions in the Werner graph (Fig. 2a).
Next to the number of predictions the em-
pirical p-value for each edge is plotted,
which is below the significance threshold
of 0.05 for the edges D-F, F-E, C-D, A-C,
B-C, D-E, C-F, D-B, and D-A (Fig. 2 a).
As the number of predictions drops to-
wards one the p-value grows to one. In
order to reduce the computational effort
to compute the empirical p-values, assume
the randomized predictions are binomial
distributed. Then the p-value computation
reduces from the multiple prediction of
random data to a binomial test with a cer-
tain probability of success. The test statistic
z on the null hypothesis is the following:

𝐻0∶ 𝑝1 = 𝑝2

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 7

Figure 3 The distribution of all edge predictions after a column wise randomization of the Werner graph. 1000 iterations with 100

sampling trials per iteration are used to count the number of predictions. On the x-axis the number of predictions in a single iteration

(e.g., the bar height of around 100 at 4 predictions means, that in 100/1000 iterations an edge was predicted 4 times during the 100

sampling trails).

and

𝐻𝐴∶ 𝑝1 ≠ 𝑝2

𝑧 =
𝑝1 − 𝑝2

√ ̂𝑝 (1 − ̂𝑝) (1
𝑛1
+ 1

𝑛2
)

with

̂𝑝 =
𝑛1𝑝1 + 𝑛2𝑝2.
𝑛1 + 𝑛2

𝑝1 is the probability of success proposed
by the distribution of predictions on the
random data, 𝑝2 is computed by sampling
from a binomial distribution 𝐵 (𝑛1, 𝑝1)and
n1 =n2 =1000 are the number of iterations.
The null hypothesis will be rejected if |z| >
1.65, which is the critical value for a right

sided z-test (the limitations for the test are
discussed later). Figure 5 shows 100 repeti-
tions for the z calculation for the proposed
𝑝1 computed from the distribution in fig-
ure 3. The null hypothesis holds true (Fig.
5), so the distribution of the predictions on
the randomized data follows the binomial
distribution with a success probability of
𝑝1.
After showing for the test case that the
distribution in figure 3 follows a binomial
distribution, it can be assumed that the
distributions of the predictions on random-
ized data for the other graph types also
follow a binomial distribution (Fig. 8 sup-
plement material). Now, the interest shifts
to the probability of success, as the bino-
mial test needs this probability as an input.
Here, success represents finding an edge.
The probability of success resulting from
the distributions of the other graph types

8 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

Figure 4 Cumulative predictions of undirected edges in the Werner graph on 100 samples. The true predictions are plotted in blue,

while the false predictions are plotted in orange. The predictions are undirected so the maximum appearance of an edge is 200. The

black dotted line is the empirical p-value (e.g., for the edge C-E the p-value is 1.0).

Figure 5 The absolute value of the right sided z-test statistic. The null hypothesis H0: p1 = p2 will be rejected if |z| > 1.65 (Eq. 2).

p1 is the probability of success estimated from the distribution shown in figure 3, while p2 is estimated by sampling from a binomial

distribution 𝑩 (𝒏𝟏, 𝒑𝟏), with n1=1000.

is shown in figure 6a. The probability of
success is lowest for the Werner graph and
stays constant afterwards. The main dif-
ferences between the Werner graph and
the other graph types are the number of
nodes. The Werner graph has six nodes,
while the other graphs in this comparison

contain ten nodes. The driving factor for
the probability of success seems to be the
number of nodes in a graph. To predict
the probability of success based on the
number of nodes, different random graphs
with 5, 10, 15, 20, 30, 50 and 100 nodes
were created to compute the probability of

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 9

a) The Werner graph contain six nodes, while

the other graphs contain ten nodes.

b) The probability of success dependent on

the number of nodes in a graph.

Figure 6 Influences on the probability of success, which is the likelihood of predicting an edge. These probabilities result from the

randomized data for the different graphs (compare Fig. 8 and Eq.1).

success (Fig. 6b). After showing that the
randomized data is distributed binomially
and estimating the probability of success ̂𝑝
(Fig. 6b), the p-values can be computed by
the binomial test. For example, using the
bootstrap settings of λ = 0.20 and n = 20
yields a p-value 0.004 for all edges found
(using ̂𝑝 = 0.035; Fig. 6b). In general, the
p-values for all edge predictions can be
computed by the binomial test. Using this
test to compute the p-values reduces the
computational effort, because the number
of iterations within the bootstrap routine
are reduced and the computed p-values are
still reliable.
In order to compare the algorithmwith and
without using bootstrap 20 random graphs
(N=20, E=35 & N=20, E=60) were cre-
ated. The algorithm predicts the network
on the correlation data with and without
using bootstrap (Fig. 7). For this test the
number of iterations within the bootstrap
routine is 30 (n=30) and the threshold for
an edge to be accepted as a prediction is
20% (λ = 0.20). In general, the statistics
are similar comparing the prediction with
and without bootstrap. However, using
the algorithm with bootstrap increases the
sensitivity, BCR and MCC, especially in
the case of higher edge density (see also
Tab. 1). The specificity does not increase,

nor decrease using the SNHA with boot-
strap. As the edge density increases, the
overall performance is reduced, but the
specificity stays close to 1.00. The speed of
the algorithm was tested on a graph with
100 nodes. It runs 1.2s ± 14.9ms without
bootstrapping (measured using timeit cell
magic in Jupyter Notebook). While the
bootstrap routine increases the runtime by
a factor of about 10n (n is the number of
bootstrap iterations).
Finally, the random graphs here shown
were compared to the Barabási-M1 and
-M2 graphs (Barabási and Albert 1999),
as these graphs are representative for net-
works occurring in social and biological
processes. Here again, 20 graphs each are
created and predicted using the SNHA
with and without bootstrap. The table 1
shows that the algorithms prediction on
the proposed random graph and Barabási
graphs are similar. Also, the difference be-
tween using the algorithm with bootstrap
and without bootstrap behaves equally for
the different graph types.

10 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

Discussion

The SNHA is a robust, non-linear and pa-
rameter free visualization method for mul-
tivariate data. It was developed recently
and verified in a few studies (Groth et al.
2019; Dorjee et al. 2021; Hermanussen et al.
2021; Scheffler et al. 2021). It displays as-
sociations between variables in a graph
yielding immediate insights into the prin-
ciple data structure. The SNHA assesses
variable chains from three up to ten nodes,
which allows an understanding of large-
scale interactions between the variables.
The search for tools to reconstruct net-
works based on correlations led to code
snippets to identify edges. However, these
examples (Yan Holtz 2018; Cortez 2017)
do not go beyond pairwise comparisons
of correlations. Since the code was only
available in a R package,its use was limited
to researchers comfortable in this program-
ming language, so, it was ported to Python.
The Python port yields the same results for
the same data sets as the R asg package.
The empirical p-value computation and
the binomial test suggest that all edge pre-
dictions occurring in 7% of the bootstrap
iterations are statistically significant. Next,
the p-value computation is discussed in
more detail. The significance of the found
edges are computed both empirically and
by the binomial test. In order to be statisti-
cally sound, the predictions on randomized
data needs to be binomial distributed. To
test for binomial distribution the right

sided z-test was conducted, which is valid
if 𝑝1𝑛1 > 5 and (1 − 𝑝1) 𝑛1 > 5, and simi-
larly for 𝑝2 and n2. On the low probability
of success (Fig. 6b) and a n = 100, the
condition 𝑝1𝑛1> 5 is not met. However,
the empirical p-values as well as the bi-
nomial test suggeststhat an edge becomes
significant if it is predicted six out of 100
times with the bootstrap routine. Selecting
all significant edges as predictions would
increase the false positive predictions. The
restrictive parameter λ acts as a threshold
for the number of appearances of an edge
within the bootstrap routine (e.g., λ = 0.5
means an edge needs to be found in 50%
of all bootstrap iterations to be accepted
as a predicted edge). The impact of the
threshold on the network predictions is
shown in the supplement material (Fig. 9).
It is unlikely to find an association chain
randomly, as the probability of success es-
timations from the distribution of number
of edge predictions on randomized data
yields 𝑝1 < 0.04. In a real-world example
one could not find the optimal λ-value, as
the underlying network structure is not
known. So, to only interpret highly signif-
icant edges, a λ 0.20 might be reasonable,
even though the condition of the z-test
does not hold.
The predictive power of the algorithm
with and without bootstrap was assessed
by the metrics sensitivity, specificity, BCR,
and MCC on graphs with 20 nodes and
a different number of edges (Fig. 7). In
general, the evaluation scores decreases

Table 1 Comparison between the prediction on the above-described random graph with the prediction on the Barabási-M1 and -M2

graph. Each statistic is the mean over the score of 20 predictions. The bootstrap ran with 30 iterations and a threshold of =0.20.

Sensitivity Specificity MCC

Graph type/Bootstrap No Yes No Yes No Yes

Barabási-M1 N=20, E=19 0.94 0.99 0.97 0.97 0.84 0.85

Random N=20, E=19 0.81 0.95 0.97 0.95 0.76 0.77

Barabási-M2 N=20, E=35 0.66 0.79 0.95 0.95 0.64 0.72

Random N=20, E=35 0.62 0.75 0.95 0.95 0.61 0.70

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 11

Figure 7 Comparison between the normal St. Nicolas house algorithm usedwith andwithout bootstrap. The statistics are computedwith

the prediction of 20 different random graphs with 20 nodes and 35/60/190 edges each. The bootstrap accepts edges as a prediction

if an edge occurs 20% of the iterations (n=30). On one hand, the prediction gets worse as the edge density increases. On the other hand,

when using the algorithm with bootstrap the prediction improves.

as the number of edges increases,while at
low edge densities the algorithm performs
well. First, the edges found with the algo-
rithm are real edges, as the specificity are
in all cases is close to 1.00. Second, the
algorithm is better than random guessing
as the BCR > 0.5 and the MCC > 0 for all
tested graph-types and edge densities. In
fact, for graphs with 20 nodes and 35 edges
or less it performs verywell, as the statistics
reaches close to 1.00 (Tab. 1, Fig. 9 in sup-
plement material) for small graphs. Even

though the bootsrap approach maintains
the pattern of reducing evaluation scores,
it improves the prediction (Fig. 7, Tab. 1).
However, the slight improvement might
not justify the increase in time needed to
use the bootstrap approach, as it repeats
the algorithm n times. The largest increase
is measured in the sensitivity. As the sensi-
tivity increases, while the high specificity
stays constant, the BCR and MCC also in-
crease. The algorithm looks for chains and
it only finds those which are distinct in

12 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

correlation. Especially, those chains which
contain branches will not be mapped com-
pletely, but only one branch will be found.
The bootstrap routine helps to identify the
branches of the chains as well. By sampling
the data set in some cases one branch will
be more distinct, while the other branch is
emphasized in another case. So, the boot-
strap routine identifies further edgeswhich
increases the true positive rate. Applying
the algorithm on the Barabási-M1 and -M2
yields similar results as the predictions on
the random graph proposed above. There-
fore, these tests enhance the described
results even further. However, the perfor-
mance is slightly better on the Barabási
graphs, because these graphs start with
only one controlling nodewhile the ran-
dom graphs described above contain two
controlling nodes, from which the directed
graph is built. The controlling points might
interfere with each other as the paths con-
verge into a single node. This interference
reduces the degree of distinction in corre-
lation, which complicates the extraction of
association chains.

Conclusion

The SNHA performs well on the tested
graph types, especially on low edge den-
sities. For higher edge densities the pre-
diction can also be improved using the
bootstrap routine. The predicted edges are
statistically significant. The SNHA (Groth
et al. 2019; Hermanussen et al. 2021) was
successfully ported from the R package
asg to Python (Hake 2023). Both packages
yield the same network predictions for the
same data sets. Now the SNHA is available
in R and Python with direct access to the
algorithm for researchers comfortable with
these programming languages. Since there

is no other tool that goes beyond compar-
ing pairwise correlations, the SNHA could
be an enrichment for certain parts of the
Python community.

Acknowledgements

Special thanks go to PD Dr. Christiane
Scheffler andProf.Dr.MichaelHermanussen
for organising the Summer School 2022 on
“Human Growth and Development” in
Gülpe, Brandenburg. There I had space
to start my project, even it is not part of
the focus of the Summer School. Further,
both of them provided support finishing
the project.

References

Barabási, A.-L./Albert, R. (1999). Emergence of Scaling
in Random Networks. Science 286 (5439), 509–512.
https://doi.org/10.1126/science.286.5439.509.

Brodersen, K. H./Ong, C. S./Stephan, K. E./Buhmann, J.
M. (2010). The Balanced Accuracy and Its Posterior Dis-
tribution. In: 20th International Conference on Pattern
Recognition, 3121–3124.

Burger, L./Nimwegen, E. (2010). Disentangling Direct
from Indirect Co-Evolution of Residues in Protein Align-
ments. PLoS computational biology 6, e1000633. https://
doi.org/10.1371/journal.pcbi.1000633.

Carbonnelle, Pierre (2022). PYPL PopularitY of Pro-
gramming Language 2022. Available online at https://
statisticstimes.com/tech/top-computer-languages.php
(accessed 12/15/2022).

Colby, S. M./McClure, R. S./Overall, C. C./Renslow,
R. S./McDermott, J. E. (2018). Improving network in-
ference algorithms using resampling methods. BMC
bioinformatics 19 (1), 376.

Cortez, Valeria (2017). Visualising stocks correla-
tions with Networks 2017. Available online at https://
towardsdatascience.com/visualising-stocks-correlations-
with-networkx-88f2ee25362e (accessed 12/15/2022).

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1371/journal.pcbi.1000633
https://doi.org/10.1371/journal.pcbi.1000633
https://statisticstimes.com/tech/top-computer-languages.php
https://statisticstimes.com/tech/top-computer-languages.php
https://towardsdatascience.com/visualising-stocks-correlations-with-networkx-88f2ee25362e
https://towardsdatascience.com/visualising-stocks-correlations-with-networkx-88f2ee25362e
https://towardsdatascience.com/visualising-stocks-correlations-with-networkx-88f2ee25362e

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 13

Davison, A./Hinkley, D. (1997). Bootstrap Methods and
Their Application. Journal of the American Statistical
Association 94. https://doi.org/10.2307/1271471.

Dorjee, B./Saha, P./Sen, J. (2021). Hierarchy of Asso-
ciations Between BMI-for-Agez-Scores, Growth and
Family Social Status Among Urban Bengali Girls of Silig-
uri Town, West Bengal: A St. Nicolas House Analysis.
Journal of the Anthropological Survey of India 70 (2),
224–239. https://doi.org/10.1177/2277436X211043631.

Dunn, S./Wahl, L. M./Gloor, G. (2008). Mutual Infor-
mationWithout the Influence of Phylogeny or Entropy
Dramatically Improves Residue Contact Prediction.
Bioinformatics (Oxford, England) 24, 333–340. https://
doi.org/10.1093/bioinformatics/btm604.

Feizi, S./Marbach, D./Médard, M./Kellis, M. (2013).
Corrigendum: Network deconvolution as a general
method to distinguish direct dependencies in networks.
Nature biotechnology 33. https://doi.org/10.1038/nbt.
2635.

Groth, D. (2023). snha: St. Nicolas House Algorithm for
R. R package version 0.1.3. Available online at https://
github.com/mittelmark/snha (accessed 7/5/2023).

Groth, D./Scheffler, C./Hermanussen, M. (2019). Body
height in stunted Indonesian children depends directly
on parental education and not via a nutrition mediated
pathway? Evidence from tracing association chains by
St. Nicolas House Analysis. Anthropologischer Anzeiger
76 (5), 445–451. https://doi.org/10.1127/anthranz/2019/
1027.

Hake, T. (2023). Snha4py: a Python implementation
of the St. Nicholas House algorithm. Available on-
line at https://github.com/thake93/snha4py (accessed
2/1/2023).

Hemelrijk, C. (1990). A matrix partial correlation test
used in investigations of reciprocity and other social in-
teraction patterns at group level. Journal of Theoretical
Biology 143, 405–420. https://doi.org/10.1016/S0022-
5193(05)80036-0.

Hermanussen, M./Aßmann, C./Groth, D. (2021). Chain
Reversion for Detecting Associations in Interacting
Variables—St. Nicolas House Analysis. International
Journal of Environmental Research and Public Health
18 (4). https://doi.org/10.3390/ijerph18041741.

Hesterberg, T. (2011). Bootstrap. WIREs Computational
Statistics 3 (6), 497–526. https://doi.org/10.1002/wics.
182.

Hopf, T./Colwell, L./Sheridan, R./Rost, B./Sander,
C./Marks, D. (2012). Three-Dimensional Structures
of Membrane Proteins from Genomic Sequencing. Cell
149, 1607–1621. https://doi.org/10.1016/j.cell.2012.04.
012.

La Fuente, A. de/Bing, N./Hoeschele, I./Mendes, P.
(2005). Discovery of Meaningful Associations in Ge-
nomic Data Using Partial Correlation Coefficients. Bioin-
formatics (Oxford, England) 20, 3565–3574. https://doi.
org/10.1093/bioinformatics/bth445.

Lapedes, A./Giraud, B./Liu, L./Stormo, G. (1997). Corre-
lated Mutations in Protein Sequences: Phylogenetic and
Structural Effects. Santa Fe Institute, Working Papers 33.
https://doi.org/10.1214/lnms/1215455556.

Li, S./Hsu, L./Peng, J./Wang, P. (2011). Bootstrap infer-
ence for network construction with an application to a
breast cancer microarray study. The Annals of Applied
Statistics 7. https://doi.org/10.1214/12-AOAS589.

Marbach, D./Costello, J./Küffner, R./Vega, N./Prill,
R./Camacho, D./Allison, K./Aderhold, A./Bonneau,
R./Chen, Y./Collins, J./Cordero, F./Crane, M./Don-
delinger, F./Drton, M./Esposito, R./Foygel, R./La Fuente,
A. de/Gertheiss, J./Zimmer, R. (2012). Wisdom of
crowds for robust gene network inference. Nature Meth-
ods 9, 796–804. https://doi.org/10.1038/nmeth.2016.

Marbach, D./Prill, R./Schaffter, T./Mattiussi, C./Flore-
ano, D./Stolovitzky, G. (2010). Revealing strengths and
weaknesses of methods for gene network inference. Pro-
ceedings of the National Academy of Sciences of the
United States of America 107, 6286–6291. https://doi.
org/10.1073/pnas.0913357107.

Marks, D./Colwell, L./Sheridan, R./Hopf, T./Pagnani,
A./Zecchina, R./Sander, C. (2011). Protein 3D Structure
Computed from Evolutionary Sequence Variation. PloS
one 6, e28766. https://doi.org/10.1371/journal.pone.
0028766.

Matthews, B. W. (1975). Comparison of the predicted
and observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) – Protein Struc-
ture 405 (2), 442–451. https://doi.org/10.1016/0005-
2795(75)90109-9.

Metropolis, N./Ulam, S. (1949). The Monte Carlo
Method. Journal of the American Statistical Association
44 (247), 335–341. Available online at http://www.jstor.
org/stable/2280232 (accessed 9/12/2022).

North, B./Curtis, D./Sham, P. (2003). A note on calcu-
lation of empirical P values from Monte Carlo proce-
dure. American journal of human genetics 72, 498–499.
https://doi.org/10.1086/346173.

Novine, M./Mattsson, C. C./Groth, D. (2022). Network
reconstruction based on synthetic data generated by
a Monte Carlo approach. Human Biology and Public
Health 3. https://doi.org/10.52905/hbph2021.3.26.

R Core Team (2022). R: A Language and Environment
for Statistical Computing. Vienna, Austria 2022. Avail-
able online at https://www.R-project.org/.

https://doi.org/10.2307/1271471
https://doi.org/10.1177/2277436X211043631
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1038/nbt.2635
https://doi.org/10.1038/nbt.2635
https://github.com/mittelmark/snha
https://github.com/mittelmark/snha
https://doi.org/10.1127/anthranz/2019/1027
https://doi.org/10.1127/anthranz/2019/1027
https://github.com/thake93/snha4py
https://doi.org/10.1016/S0022-5193(05)80036-0
https://doi.org/10.1016/S0022-5193(05)80036-0
https://doi.org/10.3390/ijerph18041741
https://doi.org/10.1002/wics.182
https://doi.org/10.1002/wics.182
https://doi.org/10.1016/j.cell.2012.04.012
https://doi.org/10.1016/j.cell.2012.04.012
https://doi.org/10.1093/bioinformatics/bth445
https://doi.org/10.1093/bioinformatics/bth445
https://doi.org/10.1214/lnms/1215455556
https://doi.org/10.1214/12-AOAS589
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1073/pnas.0913357107
https://doi.org/10.1073/pnas.0913357107
https://doi.org/10.1371/journal.pone.0028766
https://doi.org/10.1371/journal.pone.0028766
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
http://www.jstor.org/stable/2280232
http://www.jstor.org/stable/2280232
https://doi.org/10.1086/346173
https://doi.org/10.52905/hbph2021.3.26
https://www.R-project.org/

14 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

Scheffler, C./Nguyen, T. H./Hermanussen, M. (2021).
Vietnamese migrants are as tall as they want to be. Hu-
man Biology and Public Health 2. https://doi.org/10.
52905/hbph.v2.12.

University of California, Berkeley (2022). 11 Most In-De-
mand Programming Languages in 2022 2022. Avail-
able online at https://bootcamp.berkeley.edu/blog/
most-in-demand-programming-languages/ (accessed
12/15/2022).

van Rossum, G./Drake, F. L. (2009). Python 3 Reference
Manual. Scotts Valley, CA, CreateSpace.

Veiga, D./Vicente, F./Grivet, M./La Fuente, A. de/Vas-
concelos, A. (2007). Genome-wide partial correlation
analysis of Escherichia coli microarray data. Genetics
and molecular research : GMR 6, 730–742.

Yan Holtz (2018). Network from Correlation Matrix
2018. Available online at https://www.python-graph-
gallery.com/327-network-from-correlation-matrix (ac-
cessed 12/15/2022).

https://doi.org/10.52905/hbph.v2.12
https://doi.org/10.52905/hbph.v2.12
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://www.python-graph-gallery.com/327-network-from-correlation-matrix
https://www.python-graph-gallery.com/327-network-from-correlation-matrix

T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16 15

Appendix

Supplement material

 a) Werner- Graph b) Band-Graph c) Circle-Graph d) Random-Graph

 (N=10, E=13)

e) Random-Graph

 (N=15, E=26)

Figure 1 The distribution of all edge predictions after a column wise randomization of the
Werner graph. 100 iterations with 100 sampling trials per iteration are used to count the
number of predictions. On the x-axis the number of predictions in a single iteration.

Figure 8 The distribution of all edge predictions after a column wise randomization of the Werner graph. 100 iterations with 100

sampling trials per iteration are used to count the number of predictions. On the x-axis the number of predictions in a single iteration is

shown.

16 T. Hake et al. • St. Nicolas House Algorithm for Python • HBPH 2023 Vol. 1 • pp. 1–16

Figure 9 The influence of the threshold on the prediction value of the St. Nicolas house algorithm with bootstrap. For each graph five

data sets were created. The algorithm predicts each network five times and the mean over the five statistics were computed. Doing it

for all five data sets with the corresponding threshold leads to the figure above. Choosing high (0.75, 0.95) leads to a strong restriction

and the predictions are close to a random guess. On the other hand, choosing to be low (0.05, 0.10), the false positive number increases

and the predictive power becomes low. Also, the edge predictions might not be significant. For the test graph (types Band-, Circle-, and

Werner-Graph) a threshold of 0.50 is sufficient to achieve predictions, which are close to the input graph. In order to get high evaluation

scores on the random graphs the threshold is 0.25.

	Abstract
	Introduction
	Materials and Methods
	Software
	Data
	Graph types
	St. Nicolas house algorithm (SNHA)
	Quality measure for prediction
	Empirical p‐values by bootstrapping

	Results
	Discussion
	Conclusion
	Acknowledgements
	References
	Appendix
	Supplement material

